Calculation Diffusion Coefficient of Drying Clay Ceramics Using Firefly Algorithm With Study the Effects of Part Geometry

Authors

Abstract

In this study, the effects of temperature, relative humidity and air velocity on the effective coefficient diffusion on four different sample clay ceramics were investigated. A full factorial design of experiments on four cubic samples was performed. In each trial mass and volume reduction were measured using an electronic balance and a vision system and the resulting data were recorded and the drying curve was plotted. Effective diffusion coefficient of moisture using drying curves were calculated using of newly developed Firefly algorithm in which the error defined as the difference between the analytically values and the experimental values were minimized. Statistical analysis and analysis of variance showed that in calculation of the effective diffusion coefficient; the velocity, the temperature and the humidity are independent of each other. The greatest impact on the effective diffusion coefficient is related to the velocity, Followed by temperature and environmental humidity respectively. Finally from the drying parameters the regression of the diffusion coefficient was obtained.

Keywords

Main Subjects


[1] Kowalski SJ (2012) Thermomechanics of drying processes. Spring Sci& Busi.
[2] Crank J (1975) The Mathematics of diffusion. Oxford, UK 414
[3] Efremov GI (2002) Drying kinetics derived from diffusion equation with flux-type boundary conditions. Dry Technol 20(1): 55-66.
[4] Vasic MR, Radojevic ZM, Arsenovic MV, Grbavcic ZB (2011) Determination of the effective diffusion coefficient. Rev Rom Mat 41(2):169-175.
[5] Vasić M, Grbavčić Ž, Radojević Z (2012) Methods of determination for effective diffusion coefficient during convective drying of clay products.
[6] Vasić M, Grbavčić Ž, Radojević Z (2014) Analysis of moisture transfer during the drying of clay tiles with particular reference to an estimation of the time-dependent effective diffusivity. Dry Technol 32(7): 829-840.
[7] Vasić M, Grbavčić Ž, Radojević Z (2014) Determination of the moisture diffusivity coefficient and mathematical modeling of drying.  Chem Eng Prog 76: 33-44.
[8] Zagrouba F, Mihoubi D, Bellagi A (2002) Drying of clay. II Rheological modelisation and simulation of physical phenomena. Dry Technol 20(10): 1895-1917.
[9] S. Chemkhi, F. Zagrouba, Water diffusion coefficient in clay material from drying data, Desalination, Vol. 185, No. 1, pp. 491-498, 2005.
[10] Sander A, Skansi D, Bolf N (2003) Heat and mass transfer models in convection drying of clay slabs. Ceram Ind 29(6): 641-653.
[11] Boulaoued I, Mhimid A (2012) Determination of the diffusion coefficient of new insulators composed of vegetable fibers. Therm Sci 16(4): 987-995.
[12] Bakhshi M, Mobasher B, Soranakom C (2012) Moisture loss characteristics of cement-based materials under early-age drying and shrinkage conditions. Constr Build Mater 30: 413-425.
[13] خلیلی خ، احمدی بروغنی س ی، باقریان م (1393) مطالعه آزمایشگاهی و عددی فرایند خشک شدن سرامیک ها و ایجاد ترک در آنها. مکانیک سازه ها و شاره ها 129-119 :4.
[14] خلیلی خ، احمدی بروغنی س ی، باقریان م (1393) مدل سازی فرآیند خشک شدن مخلوط اشباع خاک رس و انقباض قطعه در طی فرآیند. علم و مهندسی سرامیک 80-65 :(1)3.
[15] خلیلی خ ، حیدری م (1391) مدلسازی عددی انقباض یک قطعه سرامیکی در فرآیند خشک شدن. مهندسی مکانیک مدرس 71-58 :(3)12.
[16] خلیلی خ، حیدری م (1391) بررسی تاثیر ضخامت جسم بر امکان وقوع ترک در فرآیند خشک شدن. مهندسی مکانیک مدرس 116-103 :(3)12.
[17] خلیلی خ، باقریان م، احمدی بروغنی س ی، شبیه سازی خشک شدن سرامیک ها به کمک اجزاء محدود و مقایسه با آزمایشات تجربی. فصلنامه سرامیک ایران.
[18] Khalili K, Bagherian M, Khisheh S (2014) Numerical simulation of drying ceramic using finite element and machine vision. Proc Tech 12: 388-393.
[19] Batista LM, Rosa CA, Pinto LA (2007) Diffusive model with variable effective diffusivity considering shrinkage in thin layer drying of chitosan. J Food Eng 81(1): 127-132.
[20] Hamdami N, Monteau JY, Bail AL (2004) Transport properties of a high porosity model food at above and sub-freezing temperatures. Part 2: Evaluation of the effective moisture diffusivity from drying data, J Food Eng 62(4): 385-392.
[21] Pinto L, Tobinaga S (2006) Diffusive model with shrinkage in the thin-layer drying of fish muscles. Dry Technol 24(4): 509-516.
[22] Dissa A, Desmorieux H, Bathiebo J, Koulidiati J (2008) Convective drying characteristics of Amelie mango with correction for shrinkage. J Food Eng 88(4): 429-437.
[23] G. Efremov, T. Kudra, Calculation of the effective diffusion coefficients by applying a quasi-stationary equation for drying kinetics, DRY TECHNOL, Vol. 22, No. 10, pp. 2273-2279, 2004.
[24] Ruiz-López I, García-Alvarado M (2007) Analytical solution for food-drying kinetics considering shrinkage and variable diffusivity. J Food Eng 79(1): 208-216.
[25] Vasić M, Radojević Z, Grbavčić Ž (2012) Calculation of the effective diffusion coefficient during the drying of clay samples. J Serbian Chem Soc 77(4): 523-533.
[26] Kimpton D, Wall F (1952) Determination of diffusion coefficients from rates of evaporation. J Phy Chem 56(6): 715-717.
[27] Yang XS (2010) Nature-inspired metaheuristic algorithms: Luniver press.
[28] Yang XS (2010) Firefly algorithm, stochastic test functions and design optimisation. Int J Bio-Ins Comp 2(2): 78-84.