Automatic Mixed-mode Crack Propagation and Fatigue Growth Without Domain Remeshing

Abstract

Automatic crack propagation and stable fatigue crack growth as complicate problems in fracture mechanics are studied. In this study The Extended Finite Element Method (XFEM) is utilized because of several drawbacks in standard finite element method in crack propagation modeling. Estimated Crack paths are obtained by using Level Set Method (LSM) in coupling with XFEM for 2D mixed mode crack propagation problems. Stress intensity factors for mixed mode crack problems are numerically calculated by using interaction integral method completely based on familiar path independent J-integral method. Different crack path growths are shown for different types of boundary conditions. Also, stable fatigue crack growth due to numerous cycles of loading using Paris law is presented. Finally, some experimental results and analytical solutions for stress intensity factors are concerned to guarantee the numerical estimated crack path growths and stress intensity factors respectively.

Keywords


[1] Babuska I, Melenk J (1997) The Partition of unity method. International Journal for Numerical Method in Engineering. 40: 727–758.
[2]  Belytschko T, Moes N, Usui S, Parimi C (2001) Arbitrary discontinuities in finite elements. International Journal for Numerical Method in Engineering 50: 993–1013.
[3] Fleming M, Chu A, Moran B, Belytschko T (1997) Enriched element-free methods for crack tip fields. International Journal for Numerical Methods in Engineering 40: 1483–1504.
[4] Giner E, Sukumar N, Denia FD, Fuenmayor FJ (2008) Extended finite element method for fretting fatigue crack propagation. International Journal of Solids and Structures. 45: 5675–5687.
[5] Sutradhar A, Glaucio HP (2004) Symmetric Galerkin boundary element computation of T-stress and stress intensity factors for mixed-mode cracks by the interaction integral method. Engineering Analysis with Boundary Elements. 28: 1335–1350.
[6]  Mohammadi S (2008) Extended finite element method for fracture Analysis of structures. Blackwell Publishing. Garsington Road. Oxford UK.
[7] Chen FHK, Shield RT (1977) Conservation laws in elasticity of the J-integral type. Journal of Applied Mathematics and Physics (ZAMP). 28: 1–22.
[8]  Yau JF, Wang SS, Corten HT (1980) A mixed mode crack analysis of isotropic solids using conservation leas of elasticity. Journal of Applied Mechanics. 47: 335–341.
[9] Chen Y, Lee JD, Eskandarian Azim (2006) Meshless methods in solid mechanics. Springer Publishing. USA.
[10] جاویدراد فرهاد (1383) مکانیک شکست و کاربرد آن در مهندسی. انتشارات صنایع هوافضا، تهران.
[11] Xiangqiao Y (2006) Stress intensives and propagation of mixed mode cracks. Engineering Failure Analysis. 31: 1022–1027.
[12] Yang Z (2006) Fully automatic modeling of mixed–mode crack propagation using scaled boundary finite element method. Engineering fracture mechanics. 73: 1711–1731.
[13] نادری رضا، خادم الرسول عبدالغفور (1389) شبیه سازی گسترش ترک با استفاده از روش اجزای محدود توسعه یافته. 15013. دانشگاه صنعتی شاهرود.
[14] K.Mysore OT, Morgan G (2011) NURBS representational strategies for tracking moving boundaries and topological changes during phase evolution. Comput Methods Appl Mech. Engrg.200: 2594–2610.
[15] حسنی بهروز، گنجعلی احمد، خادم الرسول عبدالغفور (1390) برآورد خطای موجود در تحلیل ایزوژئومتریک صفحه ترکدار تحت کشش. 
[16] Ritchie RO (1977) Influence of microstructure on near-threshold fatigue-crack propagation in ultra-high strength steel. Metal Science. 11:368–381.
[17] Radhakrishnan VM (1979) Parameter representation of fatigue crack growth. Engineering Fracture Mechanics. 11: 359–372.
[18] Spagnoli A (2005) Self-similarity and fractals in the Paris range of fatigue crack growth. Mechanics of Materials. 37:5 19–529.
[19] میرزایی نصیرآباد حسین، کاکایی رضا، حسنی بهروز (1387) نحوه رشد و اتصال ترک ها در محیط های سنگی با روش عددی بدون مش گالرکین و اعتبار سنجی آن با مطالعات آزمایشگاهی.