Comparative Study of Carbone Monoxide and Temperature Vertical Distribution in Tunnel Fires

Authors

Abstract

Tunnel fires are responsible for many fatalities in recent decades and this field of study has received an extensive effort by researchers, investigators, students and so forth. Removal of the generated plume and high temperature is the great interest of investigators. In the current study, a numerical test has been performed on a rectangular cross section tunnel with a pool fire at the middle part using FDS5.5. Obtained results were compared with previous results. Then vertical distributions of Carbone monoxide and temperature stratification are presented for various heat release rate of fires and various tunnel aspect ratios and inclinations which have been reported in dimensionless form using their maximum value beneath the ceiling. Results indicate that the vertical values of CO decay faster than temperature values. These profile also helps us to find out about thickness of the plume where one can be aware of smaller thickness for higher aspect ratio.

Keywords

Main Subjects


[1] Technical Report – Part 1 (2001) Design fire scenarios, rapporteur alfred haack STUVA. Thematic Network FIT ‘Fire in Tunnels.
[2] Vuilleumier F, Weatherill A, Crausaz B (2002) Safety aspects of railway and road tunnel: example of the Lötschberg railway tunnel and Mont-Blanc road tunnel. Tunnelling Underground Space Technol 17(2): 153-158.
[3] Hu L. H, Yang D, Jiang Y. Q, Huo R, Liu S (2006) A Comparative study on vertical profiles of smoke temperature and carbon monoxide concentration in a tunnel fire. Journal of Applied Fire Science 16(4): 329-344.
[4] Hu L. H, Tang F, Yang D, Liu S, Huo R (2010) Longitudinal distributions of CO concentration and difference with temperature field in a tunnel fire smoke flow. Int J Heat Mass Tran 53(13): 2844-2855.
[5] Yang D, Huo R, Zhang Xl, Zhu S, Zhao XY (2012) Comparative study on carbon monoxide stratification and thermal stratification in a horizontal channel fire. Build Environ 49: 1-8.
[6] Yang D, Huo R, Zhang XL, Zhao XY (2011) Comparison of the distribution of carbon monoxide concentration and temperature rise in channel fires: reduced-scale experiments. Appl Therm Eng 31.4: 528-36
[7] Atta S, Afshin H, Farhanieh B (2014) An analysis of carbone monoxide distribution in large tunnel fires. J Mech Sci Technol 28.5: 1917-1925.
[8] Atta S, Afshin H, Farhanieh B (2013) Numerical evaluation of stationary vehicular blockage ratio on carbon monoxide stratification in large tunnel fires. Journal of Applied Fire Science 23.4: 435-452.
[9] رئوفی. معصومه، مظاهری. کیومرث،" بررسی تأثیر شیب و انسداد تونل روی سرعت بحرانی در آتشسوزی بزرگ در تونل بین شهری"، مجله مهندسی مکانیک مدرس، بهمن ،1393دوره ،14 شماره ،11صص 4.
[10] پورکاظمی. علی، پورقاسمی. مهیار، افشین. حسین، فرهانیه. بیژن، " مطالعه پارامتریک بر روی سرعت بحرانی در زمان آتشسوزی درون تونلهای دارای سیستم تهویه طولی"، مجله مهندسی مکانیک مدرس، مرداد ،1393 دوره ، 14شماره ،5 صص 10.
[11] McGrattan K, Hostikka S, McDermott R, Floyd J, Weinschenk C (2013) Fire dynamics simulator, technical reference guide, volume 1: mathematical model. NIST Special Publication 1018.
[12] Kevin, M , Bryan, K, Simo H (2007) Fire dynamics simulator (version 5) user's guide. National Institute of Standards and Technology Special Publication.
[13] Friday PA, Mowrer FW (2001) Comparison of FDS model predictions with FM/SNL fire test data. NISTGCR01-810, National Institute of Standards and Technology, Gaithersburg, MD,.
[14] McGrattan KB, Hamins A (2002) Numerical simulation of the howard street tunnel fire. Baltimore, Maryland, National Institute of Standards and Technology.
[15] Peters AAF, Weber R (1995) Mathematical modelling of a 2.25MW swirling natural gas flame. part 1: eddy break-up concept for turbulent combustion; probability density function approach for nitric oxide formation. Combust Sci Tech 110–111: 67–101.