Robust and Adaptive Controller for Wind Turbine Blade Testing Machine

Authors

Abstract

The wind turbine blades are made of composite materials and subjected to severe operational loadings. The complexity of composite materials behavior along with variable amplitude loadings dictates the need for experimental setups which can conduct real part test as close as possible to in service loadings. In this regard, wind turbine blade manufacturers are obliged to perform standard ultimate and fatigue tests on their products. In this research a cost effective Blade Testing Machine (BTM) is proposed which is capable of conducting ultimate static and fatigue tests according to wind turbine blade standards. A new control unit is designed and implemented to track fatigue block loading in the frequency range of 1 to 3Hz. The main focus is on designing a controller to perform desired block loading fatigue tests with proper performance. PI and robust feedback controllers are designed and analyzed. Due to the poor robust performance, an adaptive feed forward controller is proposed based on the gain scheduling algorithm. The proposed robust controller compensates un-modeled high frequency dynamics and rejects measurement noises while the adaptive controller compensates low frequency uncertainty and improves reference tracking. Extensive experimentations in the desired frequency range confirm proper performance of the developed controller.

Keywords

Main Subjects


[1] Greaves, Peter, Robert (2013) Fatigue analysis and testing of wind turbine blades, Durham thesis, Durham University.
[2] رضا نادری، عبدالغفور خادم الرسول (1390) مدلسازی خودکار رشد ترک در مود مرکب و رشد ترک خستگی بدون مش بندی مجدد، مجله عملی پژوهشی مکانیک سازه‌ها و شاره‌ها.
[3] امیر ملک زاده، خلیل فرهنگ دوست، سعید حدیدی مود (1392) بررسی اثر بارگذاری ضربه‌ای در فرایند رشد ترک در فولاد فورج (EA4T)، مجله عملی پژوهشی مکانیک سازه‌ها و شاره‌ها.
[4] Nijssen RPL (2007) Fatigue life prediction and strength degradation of wind turbine rotor blade. Sandia National Laboratory report: SAND2006-7810P
[5] Van Buren KL, Mollineaux MG, Hemez FM, Atamturktur S (2013) Simulating the dynamics of wind turbine blades: part II, model validation and uncertainty quantification. Wind Energy 16: 741-758.
[6] Fleming I, Luscher DJ (2013) A model for the structural dynamic response of the CX-100 wind turbine blade. Wind Energy 17(6): 877-900.
[7] Van Paepegam W, Degrieck J (2002) Effects of load sequence and block loading on the fatigue response of fiber-reinforced composites. Mech Adv Mater Struc 9(1): 19-35.
[8] Grujicic M (2010) Structural-response analysis, fatigue-life prediction and material selection for 1 MW horizontal-axis wind-turbine blades. J Mater Eng Perform 19(6): 790-801.
[9] Larwood S, Musial W (2000) Comprehensive testing of Nedwind 12-meter wind turbine blades at NREL. National renewable energy laboratory, Report : NREL/CP-500-27497
[10] Court RS, Ridley S, Jones H, Bonnet PA, Dutton AG (2009) Fatigue testing of wind turbine blades with computational verification. ICCM-17, Edinburg.
[11] IEC 61400-23 (2005) Wind Turbine generator system- Part23: Full-scale structural testing of rotor blades.
[12] Germanischer L (2010) Guideline for the certification of wind turbines. Hamburg, Germany
[13] Paquette J, Dam J, Hughes S, Johnson J (2008) Fatigue testing of 9 m carbon fiber wind turbine research blades. Sandia National Laboratories.
[14] Westphal T (2010) Developments in wind turbine blade fatigue testing. Sandia blade workshops.
[15] Lai FM, Yang SH, Wu JH, Hsueh CT, Yang CC, Wang BH, Lan CH (2011) Development of fatigue test system for small composite wind turbine blades. Procedia Engineering.
[16] Ljung L (1999) System Identification theory for the user. 2ed edn. Prentice Hall publication.
[17] Skogestad S (2005) Ian postlethwaite, multivariable feedback control analysis and design. John wiley and Sons.
[18] Niksefat N, Sepehri N (2000) Design and experimental evaluation of a robust force controller for an electro-hydraulic actuator via quantitative feedback theory. Control Eng Pract 8(12): 1335-1345.
[19] MATLAB and Robust Toolbox Release 2012b, MathWorks, Inc., Natick, Massachusetts, United States.
[20] Astrom KJ (1995) Bjorn wittenmark, adaptive control. 2ed edn. Pearson Education Inc.