[1] Kagan P, Fischer A, Bar–Yoseph PZ (1998) New B–spline finite element approach for geometrical design and mechanical analysis. Int. J. numer.Methods Engrg. 41: 435–458.
[2] Hollig K, Reif U, Wipper J (2001) Weighted extended B–spline approximation of dirichlet problems. SIAM J Numer Anal. 39(2): 442–462.
[3] Kagan P, Fischer A, Bar–Yoseph PZ (2003) Mechanically based models: adaptive refinement for B-spline finite element. Int. J. numer.Methods Engrg. 57: 1145–1175.
[4] Hughes TGR, Cottrell JA, Bazilevs Y, (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput.Methods Appl. Mech. Engrg. 194: 4135–4195.
[5] Auricchio F, Beirao da Veiga L, Hughes TJR, Reali A, Sangalli G (2010) Isogeometric collocation methods. Math. Models Methods, Appl. Sci. 20(11): 2075–2107.
[6] Bazilevs Y, Beirao da Veiga L, Cottrell JA, Hughes TJR, Sangalli G (2006) Isogeometric analysis: approximation, stability and error estimates for h-refined meshes. Math. Models Methods Appl. Sci. 16(7): 1031–1090.
[7] Cottrell JA, Hughes TJR, Reali A (2007) Studies of refinement and continuity in isogemetric analysis. Comput.Methods Appl.Mech. Engrg. 196: 4160–4183.
[8] Drfel M, Jüttler B, Simeon B (2010) Adaptive isogeometric analysis by local h-refinement with T–splines. Comput.Methods Appl. Mech. Engrg. 199(5–8): 264–275.
[9] Evans JA, Bazilevs Y, Babuška I, Hughes TJR (2009) n-width, sup–infs, and optimality ratios for the k-version of the isogeometic finite element method. Comput.Methods Appl. Mech. Engrg. 198: 1726–1741.
[10] Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: comparison of p–method finite elements with k-method NURBS. Comput.Methods Appl. Mech. Engrg. 197(49–50): 4104–4124.
[11] Hughes TJR, Reali A, Sangalli G (2010) Efficient quadrature for NURBS–based isogeometric analysis. Comput.Methods Appl. Mech. Engrg. 199(5–8): 301–313.
[12] Bazilevs Y, Calo VM, Cottrell JA, Hughes TJR, Reali A, Scovazzi G (2007) Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows. Comput.Methods Appl. Mech. Engrg. 197(1–4): 173–201.
[13] Bazilevs Y, Calo VM, Hughes TJR, Zhang Y (2008) Isogeometric fluid–structure interaction: theory, algorithms, and computations. Comput. Mech. 43(1): 3–37.
[14] Bazilevs Y, Calo VM, Zhang Y, Hughes TJR (2006) Isogeometric fluid–structure interaction analysis with applications to arterial blood flow. Comput. Mech. 38: 310–322.
[15] Bazilevs Y, Hughes TJR (2008) NURBS-based isogeometric analysis for the computation of flows about rotating components. Comput. Mech. 43: 143–150.
[16] Buffa A, deFalco C, Sangalli G (2010) Isogeometric analysis: new stable elements for the stokes equation. Int. J. Numer. Meth. Fluids 2000, 00:1–6.
[17] Gmez H, Calo V, Bazilevs Y, Hughes TJR (2008) Isogeometric analysis of the Cahn–Hilliard phase–field model. Comput.Methods Appl. Mech. Engrg. 197(49–50): 4333–4352.
[18] Auricchio F, Beirao da Veiga L, Lovadina C, Reali A (2010) The importance of the exact satisfaction of the incompressibility constraint in nonlinear elasticity: mixed FEMs versus NURBS-based approximations. Comput.Methods Appl. Mech. Engrg. 199(5–8): 314–323.
[19] Auricchio F, Beirao da Veiga L, Buffa A, Lovadina C, Reali A, Sangalli G (2007) A fully‘‘locking-free’’ isogeometric approach for plane linear elasticity problems: astream function formulation. Comput.Methods Appl. Mech. Engrg. 197(1–4): 160–172.
[20] Benson DJ, Bazilevs Y, Hsu MC, Hughes TJR (2010) Isogeometric shell analysis: the Reissner–Mindlin shell. Comput.Methods Appl. Mech. Engrg. 199(5–8): 276–289.
[21] Cottrell JA, Reali A, Bazilevs Y, Hughes TJR (2006) Isogeometric analysis of structural vibrations. Comput.Methods Appl. Mech. Engrg. 195(41–43): 5257–5296.
[22] Elguedj T, Bazilevs Y, Calo VM, Hughes TJR (2008) B and –F projection methods for nearly incompressible linear and non-linear elasticity and plasticity using higher-order NURBS elements. Comput.Methods Appl. Mech. Engrg. 197: 2732–2762.
[23] Lipton S, Evans JA, Bazilevs Y, Elguedj T, Hughes TJR (2010) Robustness of isogeometric structural discretizations under severe mesh distortion. Comput.Methods Appl. Mech. Engrg. 199(5–8): 357–373.
[24] Wall WA, Frenzel MA, Cyron C (2008) Isogeometric structural shape optimization. Comput.Methods Appl. Mech. Engrg. 197(33–40): 2976–2988.
[25] Zhang Y, Bazilevs Y, Goswami S, Bajaj CL, Hughes TJR (2007) Patient–specific vascular NURBS modeling for isogeometric analysis of blood flow. Comput.Methods Appl. Mech. Engrg. 196(29–30): 2943–2959.
[26] Hassani B, Khanzadi M, Tavakkoli SM, Moghadam NZ,(2009) Isogeometric shape optimization of three dimensional problems. 8th World Congress on Structural and Multidisciplinary Optimization June 1–5, Lisbon, Portugal.
[27] Buffa A, Rivas J, Sangalli G, Vazquez R (2010) Isogeometric analysis inelectromagnetics: theory and testing. Technical Report, Pubblicazione: 13PV10/13/0, Istituto di Matematica Applicata e Tecnologie Informatiche (I.M.A.T.I.)–C.N.R.
[28] Buffa A, Sangalli G, Vazquez R (2010) Isogeometric analysis in electromagnetics: Bsplines approximation. Comput.Methods Appl. Mech. Engrg. 199(17–20): 1143–1152.
[29] Cottrell JA, Hughes TJR, Bazilevs Y (2009) Isogeometric analysis: toward integration of CAD and FEA. Wiley.
[30] Rao SS (1995) Optimization–theory and applications, New Age International. New Delhi.
[31] Zienkiewicz OC, Campbell JS (1973) Shape optimization and sequential linear programming. In: Optimum structural design, theory and applications (eds. R.H. Gallagher & O.C.Zienkiewicz), Wiley and Sons, London, 109–126.
[32] Vanderplaats Research & Development, Inc. (2011) USERS MANUAL Version 5.0: DOT; DESIGN OPTIMIZATIONTOOLS. http://dakota.sandia.gov/licensing/release/Users5.0.pdf.
[33] Rogers DF (2001) Anintroduction to NURBS, Morgan Kaufmann Publishers.
[34] Piegl L, Tiller W (1997) The NURBS book. 2nd ed, Springer-Verlag, New York.
[35] Zienkiewicz OC, Taylor RL, Zhu JZ (2005) The finite element method. 6thed, Elsevier Butterworth-Heinemann.
[36] Afonso SMB (1995) Shape optimization of shells under static and free vibration conditions.PhD Thesis, Department of Civil Engineering, University of Wales, Swansea,UK.
[37] Ozaka M(1993) Analysis and optimal design of structures with adaptivity. Ph.D Thesis.Department of Civil Engineering, University of Wales, Swansea, UK.
[38] Wilson RB (1963) A simplicial algorithm for concave programming. Ph.D. Thesis,Harvard University, Graduate School of Business Administration.
[39] Han SP (1977) A globally convergent method for nonlinear programming. JOTA 22(3): 297–309.
[40] Powell MJD (1978) A fast algorithm for nonlinearly constrained optimization Calculations. in: G.A. Waston (ed.), Numerical analysis, Springer, Berlin, 144–157.
[41] Hassani B, Hinton E (1999) Homogenization and Structural topology optimization. Springer.
[42] Sadd MH (2005)ELASTICITY theory, applications, and numerics. Elsevier Butterworth–Heinemann.