Design of tube Hydroforming system with the Die Ultrasonic Vibration.

Authors

Abstract

In tube hydroforming process, due to friction condition, uniform wall thickness, as well as sharp corners may not be achieved. Use of ultrasonic vibration can improve the contact conditions at the tube-die interface. The current work studies the effect of applying ultrasonic vibration on wall thickness and corner filling of hydroformed tubes. By comparing the FEM models of tubes in two cases of with vibration and without vibration, it is possible to investigate the effects of vibration on wall thickness and corner filling. In addition, the finite element analysis, as the modal and harmonic analysis, are used to design a set of ultrasonic tube hydroforming. Annealed copper tubes are used for the experimental tests. The simple mechanism introduced in this paper is used to form the tube, by which the final piece is produced with lower costs and without any need to hydroforming machine. The results indicate superimposing ultrasonic vibrations to the process will increase corner filling ratio of the tube significantly, and more uniform tube wall thickness will be achieved.

Keywords

Main Subjects


[1] Dohmann F., Hartl Ch. (1996) Hydroforming – a method to manufacture lightweight parts. Journal of Materials Processing Technology 60: 669–676.
[2] Hwang Y., Chen W. (2005) Analysis of tube hydroforming in a square cross-sectional die. International Journal of Plasticity 21: 1815–1833.
[3] Nikhare C., Weiss M., Hodgson P.D. (2009) FEA comparison of high and low pressure tube hydroforming of TRIP steel. Computational Materials Science 47: 146–152.
[4] Jimma T., Kasuga Y., Iwaki N., Miyazawa O., Mori E., Ito K., Hatano H. (1998) An application of ultrasonic vibration to the deep drawing process. Journal of Materials Processing Technology 80–81: 406–412.
[5] Akbari Mousavi S.A.A., Feizi H., Madoliat R. (2007) Investigations on the effects of ultrasonic vibrations in the extrusion process. Journal of Materials Processing Technology 187–188: 657–661.
[6] Yao Z., Kim G. -Y, Faidley L., Zou Q., Mei D., Chen Z. (2012) Effects of superimposed high-frequency vibration on deformation of aluminum in micro/meso-scale upsetting. Journal of Materials Processing Technology 212: 640– 646.
[7] افتخاری شهری سید احسان، احمدی بروغنی سید یوسف، خلیلی خلیل، کنگ بیم سو (1392) هیدروفرمینگ لوله فراصوت، بررسی تحلیلی و عددی. مجلة فنی و مهندسی مدرس- مهندسی مکانیک 13(4): 46-59.
[8] ASTM A370 Standard Test Methods and Definitions for Mechanical Testing of Steel Products.
[9] Meriam J. L., Kraige L. G, Palm W. J. (2002) Engineering Mechanics: Dynamics. 5th edn. John Wiley & Sons Inc. New York.
[10] Rose J.L. (1999) Ultrasonic Waves in Solid Media. Cambridge University Press.
[11] Cheers C.F. (1995) Design and optimization of an ultrasonic die system for forming metal cans. PhD dissertation. Loughborough University of Technology.
[12] ولی­نژاد عبدلله (1391) کلید فولاد. ویرایش هفتم، نشر طراح. تهران.
[13] Metals Handbook, Vol. 2 (1990) Properties and Selection: Nonferrous Alloys and Special-Purpose Materials. ASM International 10th ed.
 [14] AMMM Generator manual. Swiss MPI Corporation, )2011( www.mastersonics.com /documents/ mmm basics/mmm power supplies/ AMMM/ammmsoftware/ammm generator manual latest.pdf.