Finite Element Analysis of Twist Rate Role in High Pressure Torsion Process

Authors

1 Mechanical Engineering Department, Faculty of Engineering, Razi University, Kermanshah, Iran

2 Materials and Textile Engineering Department, Engineering Faculty, Razi Universty, Kermanshah, Iran,

10.22044/jsfm.2025.16515.3993

Abstract

The main goal of this work was to partially fill the existing knowledge gap concerning the twiste rate sensitivity of plain carbon steed severe plastic deformed by high pressure torsion(HPT) process. In this regard the twist rate effect on torque-twist angle curve, maximum torque and failure equivalent strain was investigated using finite element analysis (FEA) with Abaqus software. The mechanical properties, flow stress equation, initial pressure of 300 MP and five different twist rates from 0.5 rad/s to 4 rad/s were aused as input data in the modeling of the HPT process. According to obtained results, the torque-twist angle diagram shifted towards lower values with increasing twist rate. The twiste rate sensitivity index was negative and depended on twist angle as M=-0.018φ. The modified Johnson-Cook equation was an excellent fit to the all torque-twist angle curves. The maximum torque and failure equivalent strain initially increased from 1177 to 1357 N.m and from 1.25 to 2.80, respectively, by increasing twist rate to 2 rad/s, and then decreased to1209 N.m and 2.63, respectively. The maximum value of failure equivalent strain obtained with FEA was 22%, 61% and 104% higher than the values calculated using von Mises, modified Hencky and Degtyarev equations, respectively.

Keywords

Main Subjects


[1] Edalati K, Horita Z (2016) A review on high-pressure torsion (HPT) from 1935 to 1988. Mater Sci Eng A 652: 325-352.
[2] Sakai G, Nakamura K, Horita Z, Langdon TG (2005) Developing high-pressure torsion for use with bulk samples. Mater Sci Eng A 406: 268–273.
[3] Bridgman PW (1935) Effects of high shearing stress combined with high hydrostatic pressure. Phys Rev 48: 825-847.
[4] Pippan R (2009) High‐Pressure Torsion – Features and Applications. In: Zehetbauer MJ and Zhu YT (eds) Bulk Nanostructured Materials. Weinheim, Germany, Wiley VCH. 217–233.
[5] Edalati K (2025) Review of Advances in High-Pressure Torsion of Titanium and Ti-Based Materials (Alloys, Intermetallics, Oxides and High-Entropy Compounds). Mater Trans 65(5): 464-478.
[6] Beygelzimer Y, Estrin Y, Kulagin R (2023) Some Unresolved Problems of High-Pressure Torsion.  Mater Trans 68(8): 1856–1865.
[7] Gunderov DV, Asfandiyarov RN, Astanin VV, Sharafutdinov AV (2023) Slippage during High-Pressure Torsion: Accumulative High-Pressure Torsion—Overview of the Latest Results. Metals 13(8): 1340.
[8] Edalati K (2019) Metallurgical Alchemy by Ultra-Severe Plastic Deformation via High-Pressure Torsion Process. Mater Trans 60(7): 1221-1229.
[9] Borodachenkova M, Wen W, Pereira AM de B (2017) High‐Pressure Torsion: Experiments and Modeling. In: Cabibbo M (ed) Severe Plastic Deformation Techniques. InTech. Available at: http://dx.doi.org/10.5772/intechopen.69173.
[10] Zhilyaev AP, Langdon TG (2008) Using high-pressure torsion for metal processing: Fundamentals and applications. Prog Mater Sci 53(6): 893-897.
[11] Pippan R, Scheriau S, Hohenwarter A, Hafok M (2008) Advantages and limitations of HPT: a review. Mater Sci Forum 584-586: 16-21.
[12] Reis LM, Hohenwarter A, Kawasaki M, Figueiredo RB (2024). Evaluating High-Pressure Torsion Scale-Up. Adv Eng Mater 26(19): 2400175.
]13[ قائمی خیاوی س، عمادالدین ا (1395) رفتار تغییر شکل پلاستیک دیسک های آلیاژ آلومینیوم 5452 تحت فرایند پیچش فشار بالای مقید نشده و تأثیر پارامترهای دور و فشارهای اعمالی بر شعاع بحرانی آن‌ها. مجله مهندسی ساخت و تولید ایران دوره 3(3): 40-47.
]14[ کوه‌دار ح (1400) بررسی ریزساختار و رفتار سودوالاستیک در آلیاژ Fe-10Ni-7Mn (wt.%) قبل و بعد از اعمال فرایند پیچش تحت فشار بالا. مهندسی متالورژی 24(3): 216-227.
[15] Figueiredo RB, Aguilar MTP, Cetlin PR, Langdon TG (2012) Analysis of plastic flow during high-pressure torsion. J Mater Sci 47: 7807–7814.
[16] Zhilyaev AP, McNelley TR, Langdon TG (2007) Evolution of microstructure and microtexture in fcc metals during high-pressure torsion. J Mater Sci 42:1517.
[17] Halloumi A, Busquet M, Descartes S (2014) Parametric study of unconstrained high-pressure torsion- Finite element analysis. IOP Conf Ser: Mater Sci Eng 63: 012036.
[18] Hosford WF, Caddell RM (2011) Metal Forming: Mechanics and Metallurgy, 4th edition. Cambridge University Press, New York.
]19[ اسدی خانوکی م‌ت (1399) تأثیر دما و نرخ کرنش بر رفتار تغییر شکل مومسان شیشه فلز حجمی آلیاژ . فصلنامه علمی پژوهشی مواد پیشرفته در مهندسی 39(3): 140 -129.
[20] Chen G, Lu L, Ren C, Ge X (2018) Temperature dependent negative to positive strain rate sensitivity and compression behavior for 2024-T351 aluminum alloy. J Alloys Compd 765: 569-585.
[21] Huang CP, Wang M, Zhu KY, Perlade A, Huang MX (2023) Carbon-induced negative strain-rate sensitivity in a quenching and partitioning steel. Acta Mater 255: 119099.
[22] Salvado FC, Teixeira-Dias F, Walley SM, Lea LJ, Cardoso JB (2017) A review on the strain rate dependency of the dynamic viscoplastic response of FCC metals. Prog Mater Sci 88: 186-231.
[23] Liang R, Khan AS (1999) A critical review of experimental results and constitutive models for BCC and FCC metals over a wide range of strain rates and temperatures. Int J Plast 15(9): 963-980.
[24] Bridgman PW (1937) Flow phenomena in heavily stressed metals. J Appl Phys 8: 328-336.
[25] Edalati K, Horita Z, Langdon TG (2009) The significance of slippage in processing by high-pressure torsion. Scripta Mater 60: 9-12.
[26] Bachmaier A, Hafok M, Pippan R (2010) Rate independent and rate dependent structural evolution during severe plastic deformation. Mater Trans 51: 8-13.
[27] Kawasaki M, Ahn B, Langdon TG (2010) Microstructural evolution in a two-phase alloy processed by high-pressure torsion. Acta Mater 58: 919-930.
[28] Serre P, Figueiredo RB, Gao N, Langdon TG (2011) Influence of strain rate on the characteristics of a magnesium alloy processed by high-pressure torsion. Mater Sci Eng A 528: 3601-3608.
[29] Edalati K, Wang Q, Enikeev NA, Peters L-J, Zehetbauer MJ, Schafler E (2022) Significance of strain rate in severe plastic deformation on steady-state microstructure and strength. Mater Sci Eng: A 859: 144231.
[30] Edalati K, Miresmaeili R, Horita Z, Kanayama H, Pippan R (2011) Significance of temperature increase in processing by high-pressure torsion.
Mater Sci Eng A 528: 7301-7305.
[31] Hockett JE, Sherby OD (1975) Large strain deformation of polycrystalline metals at low homologous temperatures. J Mech Phys Solid 23: 87-98.
[32] Eurocode 3, Table of design material properties for structural steel, https://eurocodeapplied.com/design/en1993/steel-design-properties
[33] Cao J, Li F-g, Ma X-k, Sun Z-k (2017) Tensile stress–strain behavior of metallic alloys. Trans Nonferrous Met Soc China 27: 2443-2453.
[34] Gonoring TB, Salustre MG de M, Caetano GA, Martins JBR, Orlando MTD (2022) A constitutive model for the uniaxial tensile plastic behavior of metals based on the instantaneous strain-hardening exponent. J Mater Res Technol 20: 2421-2443.
]35[ سرادار م، باستی ع، زعیمی م (1393) بررسی عددی اثر نرخ کرنش بر پیش‌بینی آسیب به کمک معیار حدشکل‌دهی دینامیکی در فرایند شکل‌دهی ورق‌های فلزی با سرعت بالا. مجله مهندسی مکانیک مدرس 14(16): 212-222.
[36] Huh H, Lim JH, Park SH (2009) High speed tensile test of steel sheets for the stress-strain curve at the intermediate straine rate. Inter J Auto Technol 10(2): 195−204.
[37] Jantasorn P, Thamma U (2022) Effects of Angle and Rate of Twist via Pre-Torsional Deformation on Tensile Properties and Hardness of Hot-Rolled, Low-Alloy Steel Rods. Trends Sci 19(17): 5770.
[38] Senthilkumar T, Ajiboye TK (2012) Effect of Heat Treatment Processes on the Mechanical Properties of Medium Carbon Steel. J Min Mater Charac Engin 11(2): 143-152.
[39] Manjoine MJ, Pittsburgh E (1944) Influence of Rate of Strain and Temperature on Yield Stresses of Mild Steel. J Appl Mech 11(4): A211-A218.
[40] van den Beukel A (1975) Theory of the effect of dynamic strain aging on mechanical properties. physica status solidi 30(1): 197-206.
[41] Jonas JJ, Montheillet F, Toth LS, Ghosh C (2014) Effects of varying twist and twist rate sensitivities on the interpretation of torsion testing data. Mater Sci Eng A 591:  9–17.
 
[42] Yan SL, Yang H, Li HW Li, Yao X (2016) Variation of strain rate sensitivity of an aluminum alloy in a wide strain rate range: Mechanism analysis and modeling.  J Alloys Compd 688: 776-786.
[43] Picu RC (2004) A mechanism for the negative strain-rate sensitivity of dilute solid solutions. Acta Mater 52: 3447–3458.
[44] Yan N, Li Z, Xu Y, Meyers MA (2021) Shear localization in metallic materials at high strain rates. Prog Mater Sci 119: 100755.
[45] Mesarovic S (1995) Dynamic Strain Aging and Plastic Instabilities. J Mech Phys Solids 43(5):671–701.
[46] Stüwe HP, Les P (1998) Strain rate sensitivity of flow stress at large strains. Acta Mater. 46(18): 6375-6380.
 [47] Kahnooj SAH, Vaseghi M, Sameezadeh M (2022) Softening and Microstructure Evolution of Pure Copper Disks Processed by High Pressure Torsion. Met Mater Int 28: 2646–2651.
[48] Eleiche ASM (1982) Strain-rate History and Temperature Effects on the Torsional-shear Behavior of a Mild Steel. Exp. Mech 22: 285-294.
[49] Ghosh AK (2007) On the measurement of strain-rate sensitivity for deformation mechanism in conventional and ultra-fine grain alloys. Mater Sci Eng A 463: 36-40.
[50] Chen H, Chen Z, Liu J, Wu Y, Dan C, Zhong S, Wang H, Bréchet Y (2021) Constitutive modeling of flow stress and work hardening behavior while considering dynamic strain aging. Materialia 18: 101137.
[51] Dieter GE (1988) Mechanical Metallurgy- SI Metric ed. McGraw-Hili Book Company (UK) Limited, London.
[52] Segal VM (2019) Equivalent and effective strains during severe plastic deformation (SPD). Phi Mag Let 98(11): 511-520.
[53] Johnson W, Mellor PB (1983) Engineering-plasticity . Ellis Horwood Limited, England.
[54] Beer FP, Johnston ER, Dewolf  JT (2012) Mechanics of materials. 6th ed., McGraw-Hill Companies Inc. p 147.
[55] Jonas JJ, Ghosh C, Toth LS (2014) The equivalent strain in high pressure torsion. Mater Sci Eng A 607: 530–535.
[56] Degtyarev MV, Chashchukhina TI, Voronova LM,  Patseov AM, Pilygin VP (2007) Influence of the relaxation processes on the structure formation in pure metals and alloys under high-pressure torsion. Acta Mater 55: 6039-6050.