[1] Minnemann Kuhnert W, Cammarano A, Silveira M, Paupitz Gonçalves PJ. Optimum design of electromechanical vibration isolators. J. Vibration and Control 2020;27:169–84.
[2] Panda S, Hajra S, Mistewicz K, In-na P, Sahu M, Rajaitha PM, et al. Piezoelectric energy harvesting systems for biomedical applications. Nano Energy 2022;100:107514.
[3] Zhang L, Zhang F, Qin Z, Han Q, Wang T, Chu F. Piezoelectric energy harvester for rolling bearings with capability of self-powered condition monitoring. Energy 2022;238:121770.
[4] Kazmierski TJ, Beeby S. Energy harvesting systems. Principles, Modeling and Applications; Springer Science+ Business Media LLC: New York, NY, USA 2011.
[5] Farhangdoust S, Mehrabi A, Younesian D. Bistable wind-induced vibration energy harvester for self-powered wireless sensors in smart bridge monitoring systems. Nondestructive characterization and monitoring of advanced materials, aerospace, civil infrastructure, and transportation XIII, vol. 10971, International Society for Optics and Photonics; 2019, p. 109710C.
[6] Fu H, Mei X, Yurchenko D, Zhou S, Theodossiades S, Nakano K, et al. Rotational energy harvesting for self-powered sensing. Joule 2021;5:1074–118.
[7] Jiang Q, Yu C, Zhou Y, Zhao Z, Gao Q, Sun B. Modeling and analysis of beam-spring magnetically coupled bistable energy harvester for broadband vibration energy harvesting. J. Sound and Vibration 2024;579:118373.
[8] Norenberg JP, Luo R, Lopes VG, Peterson JVLL, Cunha A. Nonlinear dynamics of asymmetric bistable energy harvesters. International J. Mechanical Sciences 2023;257:108542.
[9] Zheng X, He L, Wang S, Liu X, Liu R, Cheng G. A review of piezoelectric energy harvesters for harvesting wind energy. Sensors and Actuators A: Physical 2023;352:114190.
]10[ حسینی را، لطافتی م، حسینی مقدم س. برداشت انرژی ارتعاشی با استفاده از تیر یک سردرگیر با دولایه پیزوالکتریک. مکانیک سازه ها و شارهها 2017;7:1–9.
]11[ حسینی را، ابراهیمی ممقانی ع، نوری م. بررسی تجربی اثر کاهش عرض تیر بر بازده برداشتکننده انرژی ارتعاشی پیزوپلیمری. مکانیک سازهها و شارهها 2017;7:41–51.
]12[ حسینی را، فاتحی ناراب ه. بررسی تجربی برداشت انرژی از راه رفتن انسان. مکانیک سازه ها و شارهها 2017;7:173–81.
[13] Twiefel J, Westermann H. Survey on broadband techniques for vibration energy harvesting. J. Intelligent Material Systems and Structures 2013;24:1291–302.
[14] Pellegrini SP, Tolou N, Schenk M, Herder JL. Bistable vibration energy harvesters: A review. J. Intelligent Material Systems and Structures 2012;24:1303–12.
[15] Wang S, Li Z, Zhang H, Fang S, Yurchenko D, Zhou S. Analytical and experimental investigation of a flexible bistable energy harvester in rotational environment. Nonlinear Dynamics 2023;111:16851–73.
[16] Tabak A, Safaei B, Memarzadeh A, Arman S, Kizilors C. An Extensive Review of Piezoelectric Energy-Harvesting Structures Utilizing Auxetic Materials. J. Vibration Engineering & Technologies 2024;12:3155–92.
[17] Wakshume DG, Płaczek MŁ. Optimizing Piezoelectric Energy Harvesting from Mechanical Vibration for Electrical Efficiency: A Comprehensive Review. Electronics 2024;13.
[18] Shi X, Sun Y, Li D, Liu H, Xie W, Luo X. Advances in wearable flexible piezoelectric energy harvesters: materials, structures, and fabrication. J. Materials Science: Materials in Electronics 2023;34:220.
[19] Hosseini R, Hamedi M. Improvements in energy harvesting capabilities by using different shapes of piezoelectric bimorphs. J. Micromechanics and Microengineering 2015;25:125008.
[20] Rezaei M, Talebitooti R, Liao W-H. Investigations on magnetic bistable PZT-based absorber for concurrent energy harvesting and vibration mitigation: Numerical and analytical approaches. Energy 2022;239:122376.
[21] Priya S, Song H-C, Zhou Y, Varghese R, Chopra A, Kim S-G, et al. A Review on Piezoelectric Energy Harvesting: Materials, Methods, and Circuits. Energy Harvesting and Systems 2017;4:3–39.
[22] Chen K, Gao F, Liu Z, Liao W-H. A nonlinear M-shaped tri-directional piezoelectric energy harvester. Smart Materials and Structures 2021;30:45017.
[23] Hosseini R, Hamedi M, Im J, Kim J, Dayou J. Analytical and experimental investigation of partially covered piezoelectric cantilever energy harvester. Int. J. Precision Engineering and Manufacturing 2017;18:415–24.
[24] Erturk A, Hoffmann J, Inman DJ. A piezomagnetoelastic structure for broadband vibration energy harvesting. Applied Physics Letters 2009;94:254102.
[25] Shahruz SM. Increasing the Efficiency of Energy Scavengers by Magnets. J. Computational and Nonlinear Dynamics 2008;3.
[26] Stanton SC, McGehee CC, Mann BP. Nonlinear dynamics for broadband energy harvesting: Investigation of a bistable piezoelectric inertial generator. Physica D: Nonlinear Phenomena 2010;239:640–53.
[27] Tang L, Yang Y, Soh C-K. Improving functionality of vibration energy harvesters using magnets. J. Intelligent Material Systems and Structures 2012;23:1433–49.
[28] Firoozy P, Khadem SE, Pourkiaee SM. Broadband energy harvesting using nonlinear vibrations of a magnetopiezoelastic cantilever beam. Int. J. Engineering Science 2017;111:113–33.
[29] Lee AJ, Inman DJ. A multifunctional bistable laminate: Snap-through morphing enabled by broadband energy harvesting. J. Intelligent Material Systems and Structures 2018;29:2528–43.
[30] Litak G, Margielewicz J, Gąska D, Wolszczak P, Zhou S. Multiple Solutions of the Tristable Energy Harvester. Energies 2021;14.
[31] Abedini A, Onsorynezhad S, Wang F. Study of an impact driven frequency up-conversion piezoelectric harvester. Dynamic Systems and Control Conference, vol. 58295, American Society of Mechanical Engineers; 2017, p. V003T41A005.
[32] erayatifar M, Tahani M, Moeenfard H. Nonlinear analysis of functionally graded piezoelectric energy harvesters. Composite Structures 2017;182:199–208.
[33] Khaghanifard J, Askari AR, Taghizadeh M, Awrejcewicz J, Folkow PD. Nonlinear modelling of unimorph and bimorph magneto-electro-elastic energy harvesters. Applied Mathematical Modelling 2023;119:803–30.
[34] Wu Y, Badel A, Formosa F, Liu W, Agbossou A. Nonlinear vibration energy harvesting device integrating mechanical stoppers used as synchronous mechanical switches. J. Intelligent Material Systems and Structures 2014;25:1658–63.
[35] Ai R, Monteiro LLS, Monteiro PC, Pacheco PMCL, Savi MA. Piezoelectric vibration-based energy harvesting enhancement exploiting nonsmoothness. Actuators, vol. 8, Multidisciplinary Digital Publishing Institute; 2019, p. 25.
[36] Soliman MSM, Abdel-Rahman EM, El-Saadany EF, Mansour RR. A wideband vibration-based energy harvester. J. Micromechanics and Microengineering 2008;18:115021.
[37] Abedini A, Wang F. Energy harvesting of a frequency up-conversion piezoelectric harvester with controlled impact. The European Physical J. Special Topics 2019;228:1459–74.
[38] Cao D-X, Xia W, Guo X-Y, Lai S-K. Modeling and experiment of vibro-impact vibration energy harvester based on a partial interlayer-separated piezoelectric beam. J. Intelligent Material Systems and Structures 2020;32:817–31.
[39] Shahsavar M, Ashory MR, Khatibi MM. Increasing the efficiency of a bistable cantilever beam energy harvester exploiting vibro-impact effects. J. Intelligent Material Systems and Structures 2022:1045389X221115703.
[40] Dechant E, Fedulov F, Chashin D V, Fetisov LY, Fetisov YK, Shamonin M. Low-frequency, broadband vibration energy harvester using coupled oscillators and frequency up-conversion by mechanical stoppers. Smart Materials and Structures 2017;26:65021.
[41] Liang J-W, Feeny BF. Balancing energy to estimate damping parameters in forced oscillators. J. Sound and Vibration 2006;295:988–98.
[42] Li X, Li Z, Huang H, Wu Z, Huang Z, Mao H, et al. Broadband spring-connected bi-stable piezoelectric vibration energy harvester with variable potential barrier. Results in Physics 2020;18:103173.