A Adaptable Fault Detection Method in Engineering Systems Using Machine Learning

Authors

1 Faculty of Management and Industrial Engineering Department, Malek-Ashtar University of Technology, Tehran, Iran.

2 Faculty of Management and Industrial Engineering Department, Malek-Ashtar University of Technology, Tehran, Iran

10.22044/jsfm.2025.15631.3933

Abstract

In the realm of system engineering, efficient and rapid fault detection is crucial for maintaining operational safety and performance. Traditional fault detection methodologies often depend on extensive system-specific knowledge and are designed to identify only predefined faults, limiting their broader application. This paper introduces a novel machine learning-based fault detection approach that leverages minimal system inputs to model normal operating conditions. Unlike traditional methods, our approach does not require detailed expertise about specific fault conditions. In-stead, it detects deviations from normal behavior, flag-ging these as potential faults. This model assumes that any significant discrepancy between expected and actu-al sensor data indicates a fault, thereby simplifying the fault detection process and enhancing its applicability across various systems. To validate the effectiveness of this approach, we conducted experiments on a quad-copter, focusing on motor and external disturbances. The results demonstrate that our model can successfully identify faults without prior knowledge of specific fault types, offering a flexible and scalable solution for vari-ous industrial applications. The simplicity and adapta-bility of this method make it particularly attractive for systems where traditional fault detection techniques may be impractical due to complexity or the need for rapid deployment.

Keywords

Main Subjects


[1]     Bektash, O., & la Cour-Harbo, A. (2020). Vibration analysis for anomaly detection in unmanned aircraft. Paper presented at the Annual Conference of the Prognostics and Health Management Society 2020.
[2]     Cheng, D.-L., & Lai, W.-H. (2019). APPLICATION OF SELF-ORGANIZING MAP ON FLIGHT DATA ANALYSIS FOR QUADCOPTER HEALTH DIAGNOSIS SYSTEM. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences.
[3]     Zhang, X., Zhao, Z., Wang, Z., & Wang, X. (2021). Fault detection and identification method for quadcopter based on airframe vibration signals. Sensors, 21(2), 581.
[4]     Feierl, L., Unterberger, V., Rossi, C., Geradts, B., & Gaetani, M. (2023). Fault Detective: Automatic Fault-Detection for Solar Thermal Systems based on Artificial Intelligence. Solar Energy Advances, 100033.
[5]     Yairi, T., Kawahara, Y., Fujimaki, R., Sato, Y., & Machida, K. (2006). Telemetry-mining: a machine learning approach to anomaly detection and fault diagnosis for space systems. Paper presented at the 2nd IEEE International Conference on Space Mission Challenges for Information Technology (SMC-IT'06), pp. 8 pp.-476.
[6]     Ahmad, M. W., Reynolds, J., & Rezgui, Y. (2018). Predictive modelling for solar thermal energy systems: A comparison of support vector regression, random forest, extra trees and regression trees. J. cleaner production, 203, 810-821.
[7]     Cheliotis, M., Lazakis, I., & Theotokatos, G. (2020). Machine learning and data-driven fault detection for ship systems operations. Ocean Engineering, 216, 107968.
[8]     Bode, G., Thul, S., Baranski, M., & Müller, D. (2020). Real-world application of machine-learning-based fault detection trained with experimental data. Energy, 198, 117323.
[9]     Li, Y. (2022). Exploring real-time fault detection of high-speed train traction motor based on machine learning and wavelet analysis. Neural Computing and Applications, 34(12), 9301-9314.
[10]   Abdelgayed, T. S., Morsi, W. G., & Sidhu, T. S. (2017). Fault detection and classification based on co-training of semisupervised machine learning. IEEE Transactions on Industrial Electronics, 65(2), 1595-1605.
[11]   Amruthnath, N., & Gupta, T. (2018). A research study on unsupervised machine learning algorithms for early fault detection in predictive maintenance. Paper presented at the 2018 5th international conference on industrial engineering and applications (ICIEA).
[12]   Sievers, M., & Madni, A. M. (2016). Agent-based flexible design contracts for resilient spacecraft swarms. Paper presented at the 54th AIAA aerospace sciences meeting, p. 0476.
[13]   Abbasi, M. A., Khan, A. Q., Abid, M., Mustafa, G., Mehmood, A., Luo, H., & Yin, S. (2020). Parity-based robust data-driven fault detection for nonlinear systems using just-in-time learning approach. Transactions of the Institute of Measurement and Control, 42(9),1690-1699.
[14]   Cao, W., Cong, W., & Sun, M. (2012). Iterative learning based fault detection and estimation in nonlinear systems. J.  Sys. Eng. Elec., 23(3), 419-424.
[15]   Zeng, C., Chen, T., Xing, M., & Wang, Y. (2024). Fast fault detection for nonlinear interconnected systems via deterministic learning. Transactions of the Institute of Measurement and Control, 46(4), 624-637.
[16]   Park, K. H., Park, E., & Kim, H. K. (2021). Unsupervised fault detection on unmanned aerial vehicles: Encoding and thresholding approach. Sensors, 21(6), 2208.
[17]   Zhu, Z., & Jiao, X. (2012). Fault detection for nonlinear networked control systems based on fuzzy observer. J. Sys. Eng. Elect., 23(1), 129-136.
[18]   Puchalski, R., & Giernacki, W. (2022). UAV fault detection methods, state-of-the-art. Drones, 6(11), 330.
[19]   López-Estrada, F., Méndez-López, A., Santos-Ruiz, I., Valencia-Palomo, G., & Escobar-Gómez, E. (2021). Fault detection in unmanned aerial vehicles via orientation signals and machine learning. Revista iberoamericana de automática e informática industrial, 18(3), 254-264.
 
[20]   Yang, L., Li, S., Li, C., Zhu, C., Zhang, A., & Liang, G. (2023). Data-driven unsupervised anomaly detection and recovery of unmanned aerial vehicle flight data based on spatiotemporal correlation. Science China Technological Sciences, 66(5), 1304-1316.
[21]   Doostmohammadian, M., Zarrabi, H., & Charalambous, T. (2023). Sensor fault detection and isolation via networked estimation: rank-deficient dynamical systems. Int. J. Cont., 96(11), 2853-2870.
[22]   ایوقی م.و، دلی ع. ش. (2023). مدل های مبتنی بر یادگیری عمیق در شناسایی سیستم های غیرخطی. مجله کنترل, 17(2), 1-23.
[23]   یعقوبی ع، محمدی م. (2024). تشخیص خطا با استفاده از شبکه عصبی در روتور تمایل یابنده. نشریه مهندسی مکانیک امیرکبیر, 56(3), 321-344.
[24]   مرزبالی ح.م، حسنی س، مشایخی ه، مشایخی و. (2021). استخراج ویژگی به کمک یادگیری عمیق برای تشخیص و دسته بندی خطاهای مکانیکی یاتاقان در ماشین‌های القایی قفس سنجابی. مکانیک سازه ها و شاره ها, 11(5), 33-48.