Numerical Investigation of Rotational Domain Size on Aerodynamic Performance of the Caradonna-Tung Rotor in Hover Conditions

Authors

1 MSc of Aerospace Engineering Malek-Ashtar university of technology

2 Assist. Prof. of Mechanical Engineering, Faculty of Naval Aviation, Malek-Ashtar University of Technology, Tehran, Iran

10.22044/jsfm.2025.14993.3888

Abstract

This study investigates the impact of the rotational domain size on computational fluid dynamics (CFD) simulations on the pressure coefficient and lift force distribution on the Caradonna-Tung rotor blades. The analyses were conducted for hover flight conditions, utilizing a three-dimensional compressible model in ANSYS fluent with the k-ε turbulence model. The rotor, with a radius of 114 cm, a chord length of 19 cm, and a NACA 0012 airfoil, operates without taper and twist at a collective pitch angle of 8 degrees and a rotational speed of 1750 RPM. The primary objective of this research is to evaluate the effects of three different rotational domain sizes (5, 12, and 18 cm) on the accuracy of aerodynamic predictions. The results were compared with experimental data, demonstrating that the 12 cm and 18 cm rotational domain sizes show excellent agreement with the experimental results, while the 5 cm domain size underperforms. Notably, in sections close to the blade tip (at the 0.96 Span-wise location), the simulations indicate a tip vortex phenomenon, which is not observed in the experimental data. However, due to unavailability of experimental data beyond this point, the accuracy of this observation cannot be confirmed or refuted. Additionally, it was determined that the distance of the rotational domain from the upper surface of rotor should be at least 8% of the rotor diameter to ensure reliable results.

Keywords

Main Subjects


[1] J. Seddon and Simon Newman, Basic Helicopter Aerodynamic, BSP Professional Book, 1990.
[2] L. Morino and K. Tseng, A General Theory of  Unsteady Compressible Potential Flows with Application to Aeroplanes and Rotors, Elsevier Applied Science, pp.183-254, 1990.
[3] L. morino and M. Gennaretti, Boundary Integral Equation Methods for Aerodynamics”, the American Institue of Aeronautics and Astronatics, 1991.
[4] Doerffer, P. and O. Szulc, Numerical simulation of model helicopter rotor in hover. Task Quarterly, 2008. 12(3): p. 227-236.
[5] Barakos, G., et al., Development of CFD capability for full helicopter engineering analysis. 2005.
[6] Yongjie, S., et al., A new single-blade based hybrid CFD method for hovering and forward-flight rotor computation. Chinese J. Aeronautics, 2011. 24(2): p. 12
]7[  کامیار منصور، حسن محمد­خانی، 1381، تحلیل عددی جریان اطراف روتور هلیکوپتر در حالت ایستایی، چهارمین کنفرانس انجمن هوافضای ایران، تهران، دانشگاه صنعتی امیر کبیر.
]8[  علی خسروشیری، علیرضا مستوفی­زاده، مسعود دهقان حسین­آباد، 1385، مقایسه حل جریان لزج و غیرلزج اطراف روتور بالگرد در پرواز ایستایی با استفاده از یک شبکه بی­سازمان، دهمین کنفرانس دینامیک شاره­ها، گروه مهندسی مکانیک، دانشگاه یزد.
[9] Kang, H. J., and Kown, O, J., ‘’Unstructured Mesh Navier-Stocks Calculation of the Flow Field of a Helicopter Rotor in Hover’’ AIAA paper January 2002.
[10] Kang, H. J., and Kown, O, J., ‘Numerical Predication of Rotor Hover Performances Using Unstructured Adaptive Meshes’’ AIAA paper 2000-0258, January 2002.
[11] S. Goldstein, “Vortex Theory of Screw Propellers, Royal Society Proc. 123, 1929.
[12] R. E. Baskin, L, S. Vildgrube, E. S. Vozhdayev and G.L. Maykaper, “Theory of the lifting Airscrew”, NASA-TTF-823, February 1976.
]13[کامیار منصور، حمید فرخ­فال، 1381، محاسبه توزیع نیروی برآ در طول تیغه روتور با استفاده از روش گلدشتاین، چهارمین کنفرانس انجمن هوافضای ایران، تهران، دانشگاه صنعتی امیر کبیر.
[14] Barakos, G., et al., CFD simulation of helicopter rotor flow based on unsteady actuator disk model. Chinese J.Aeronautics, 2020.
[15] Janković, D., et al., CFD Calculation of helicopter tail rotor airloads for fatigue strength experiments. J. Aerospace Engineering, 2017. 30(5): p. 04017032.
[16] Cheng-Long, Z., et al. CFD Simulation Methods for Rotor Hovering Based on NS Equation. in IOP Conference Series: Materials Science and Engineering. 2019. IOP Publishing.
[17] Pérez Gordillo, A.M., et al., Numerical and Experimental Estimation of the Efficiency of a Quadcopter Rotor Operating at Hover. Energies, 2019. 12(2): p. 261.
[18] Fluent User’s Guide, Fluent Inc. July 1998, Lebanon, NH 03766, USA.
[19] F. X. Caradonna and C. Tung, Experimental and Analytical Studies of a Model Helicopter in Hover, J.Aircraft, Vol. 24, 1987, pp. 231-238.