Electromechanical Modeling of the Heart in Healthy and Pulmonary Arterial Hypertension Cases

Authors

1 MSc, Department of Mechatronics Engineering, Faculty of Mechanical Engineering, University of Tabriz, Tabriz, Iran

2 Assist. Prof., Department of Mechatronics Engineering, Faculty of Mechanical Engineering, University of Tabriz, Tabriz, Iran

Abstract

Cardiovascular diseases are the leading cause of death worldwide. Computer simulations of cardiac function are gradually becoming a powerful tool to better understand cardiac behavior and support clinical decision-making. However, right heart modeling is still in its early stages. Pulmonary hypertension is a pathophysiological disorder that may involve several clinical conditions. This study presents a fully coupled multiscale mathematical and numerical model of cardiac electromechanics with idealized biventricular geometry for normal subjects and pulmonary hypertension patients in COMSOL software. Muscle fibers that control electrical conduction and myocardial contraction, is one of the vital factors for the electromechanical simulation of the heart which was defined using a rule-based method. Windkessel blood circulation model was used to calculate systemic and pulmonary pressures. Blood circulation was modeled with a straightforward approach for the left and right ventricles. Lastly, alterations in the functional behavior of the heart were evaluated between individuals without pulmonary hypertension and healthy subjects. It was observed that right ventricular pressure increases in pulmonary arterial hypertension and ejection fraction decreases.

Keywords

Main Subjects


[1] طاهری م، مدبری فر م، حسنی ا، کریمی پ، رحمانی ن (2023) استخراج تجربی مدول الاستیسیته‌ی بافت سرطانی معده با استفاده از مدل‌های مکانیک تماس توسعه‌یافته‌ی استوانه‌ای. مکانیک سازه‌ها و شاره‌ها 13(4): 83-94.
[2] World Health Organization (2021). Cardiovascular diseases (CVDs).
[3] Regazzoni F, Salvador M, Dedè L, Quarteroni A (2022) A machine learning method for real-time numerical simulations of cardiac electromechanics. Comput Methods Appl Mech Eng 393: 114825.
[4] Piersanti R, Regazzoni F, Salvador M, Corno AF, et al. (2022) 3D–0D closed-loop model for the simulation of cardiac biventricular electromechanics. Comput Methods Appl Mech Eng 391: 114607.
[5] Göktepe S, Abilez OJ, Parker KK, Kuhl E (2010) A multiscale model for eccentric and concentric cardiac growth through sarcomerogenesis. J Theor Biol 265(3): 433-442.
[6] Gerach T, Schuler S, Fröhlich J, Lindner L, et al. (2021) Electro-mechanical whole-heart digital twins: a fully coupled multi-physics approach. Mathematics 9(11): 1247.
[7] Regazzoni F, Salvador M, Africa PC, Fedele M, et al. (2022) A cardiac electromechanical model coupled with a lumped-parameter model for closed-loop blood circulation. J Comput Phys 457: 111083.
[8] Haddad F, Doyle R, Murphy DJ, Hunt SA (2008) Right ventricular function in cardiovascular disease, part II: pathophysiology, clinical importance, and management of right ventricular failure. Circulation 117(13): 1717-1731.
[9] Humbert M, Sitbon O, Yaïci A, Montani D, et al. (2010) Survival in incident and prevalent cohorts of patients with pulmonary arterial hypertension. Eur Respir J 36(3): 549-555.
[10] Heidari A, Elkhodary KI, Pop C, Badran M, et al. (2022) Patient-specific finite element analysis of heart failure and the impact of surgical intervention in pulmonary hypertension secondary to mitral valve disease. Med Biol Eng Comput 60(6): 1723-1744.
[11] Lankhaar J-W, Westerhof N, Faes TJ, Marques KM, et al. (2006) Quantification of right ventricular afterload in patients with and without pulmonary hypertension. Am J Physiol: Heart Circ Physiol 291(4): H1731-H1737.
[12] Segers P, Stergiopulos N, Westerhof N (2000) Quantification of the contribution of cardiac and arterial remodeling to hypertension. Hypertension 36(5): 760-765.
[13] Xi C, Latnie C, Zhao X, Tan JL, et al. (2016) Patient-specific computational analysis of ventricular mechanics in pulmonary arterial hypertension. J Biomech Eng 138(11): 111001.
[14] Kheyfets VO, Truong U, Ivy D, Shandas R (2019) Structural and biomechanical adaptations of right ventricular remodeling—in pulmonary arterial hypertension—reduces left ventricular rotation during contraction: A computational study. J Biomech Eng 141(5): 051002.
[15] Ahmad Bakir A (2018) A multiphysics fluid-electromechanical finite element model of cardiac ventricles for simulation of pathologies and treatments. UNSW Sydney.
[16] Nordsletten D, McCormick M, Kilner P, Hunter P, et al. (2011) Fluid–solid coupling for the investigation of diastolic and systolic human left ventricular function. Int J Numer Methods Biomed Eng 27(7): 1017-1039.
[17] Cansız B, Woodworth LA, Kaliske M (2021) A simple phenomenological approach for myocardial contraction: formulation, parameter sensitivity study and applications in organ level simulations. Mech Soft Mater 3(1): 1-28.
[18] نمه شیری پ، اللهوردی زاده ا، داداش زاده ب (2023) مدل‌سازی و شبیه‌سازی رشد در نارسایی قلبی دیاستولیک. علوم کاربردی و محاسباتی در مکانیک 35(3): 101-114.
[19] Eriksson TS, Prassl AJ, Plank G, Holzapfel GA (2013) Influence of myocardial fiber/sheet orientations on left ventricular mechanical contraction. Math Mech Solids 18(6): 592-606.
[20] Nash MP, Panfilov AV (2004) Electromechanical model of excitable tissue to study reentrant cardiac arrhythmias. Prog Biophys Mol Biol 85(2-3): 501-522.
[21] Göktepe S, Kuhl E (2010) Electromechanics of the heart: a unified approach to the strongly coupled excitation–contraction problem. Comput Mech 45(2): 227-243.
[22] Ahmad Bakir A, Al Abed A, Stevens MC, Lovell NH, et al. (2018) A multiphysics biventricular cardiac model: Simulations with a left-ventricular assist device. Front Physiol 9: 1259.
[23] Aliev RR, Panfilov AV (1996) A simple two-variable model of cardiac excitation. Chaos, Solitons Fractals 7(3): 293-301.
[24] Holzapfel GA, Ogden RW (2009) Constitutive modelling of passive myocardium: a structurally based framework for material characterization. Philos. Trans R Soc, A 367(1902): 3445-3475.
[25] Usyk TP, LeGrice IJ, McCulloch AD (2002) Computational model of three-dimensional cardiac electromechanics. Comput Visualization Sci 4: 249-257.
[26] Rausch M, Dam A, Göktepe S, Abilez O, et al. (2011) Computational modeling of growth: systemic and pulmonary hypertension in the heart. Biomech Model Mechanobiol 10(6): 799-811.
[27] Arumugam J, Mojumder J, Kassab G, Lee LC (2019) Model of anisotropic reverse cardiac growth in mechanical dyssynchrony. Sci Rep 9(1): 12670.
[28] Berberoğlu E, Solmaz HO, Göktepe S (2014) Computational modeling of coupled cardiac electromechanics incorporating cardiac dysfunctions. Eur J Mech A Solids 48: 60-73.
 
[29] نمه شیری پ، اللهوردی زاده ا، داداش زاده ب (2023) مدل‌سازی الکترومکانیکی تنگی دریچه آئورتی با خواص هایپرالاستیک و ویسکوالاستیک میوکاردیوم. مهندسی مکانیک دانشگاه تبریز 53(2): 155-164.
[30] Mulieri LA, Hasenfuss G, Leavitt B, Allen PD, et al. (1992) Altered myocardial force-frequency relation in human heart failure. Circulation 85(5): 1743-1750.
[31] Klabunde R (2011) Cardiovascular physiology concepts. 2nd edn. Lippincott Williams & Wilkins, Sydney.
[32] Mebazaa A, Karpati P, Renaud E, Algotsson L (2009) Acute right ventricular failure—from pathophysiology to new treatments. In: Hedenstierna G, Mancebo J, Brochard L, Pinsky M (eds) Applied physiology in intensive care medicine.