Modeling the hydraulic-thermal performance of a sinusoidal semi-porous channel with nanofluid flow and applying a magnetic field

Authors

1 PhD graduate, Department of Mechanical Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran

2 Associate Professor, Department of Mechanical Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran

10.22044/jsfm.2024.14036.3828

Abstract

In this study, the hydraulic-thermal performance of a semi-porous wave channel with nanofluid flow and applied magnetic field has been evaluated. The magnetic field is perpendicular to the channel. In this design, single-phase, incompressible and permanent nanofluid flow is considered. The ranges of Hartmann number and Darcy number are 0 ≤ Ha ≤ 10 and 10-5 ≤ Da ≤ 10-2, respectively. Magnesium oxide nanoparticles have been investigated in four different volume fractions (0, 2, 4 and 5%). The governing equations are solved by the finite volume method. Based on the obtained results, increasing the volume fraction of nanoparticles and channel wave improves heat transfer. At constant Reynolds number, increasing the number of wave channels from 4 to 6 resulted in a 7.8% decrease in thermal hydraulics. The increase in permeability in the porous medium has increased the Nusselt number and reduced friction. The best thermal hydraulic performance is 10.08 at Darcy number 0.01 and the lowest is 0.52 at Darcy number 0.0001. Also, the presence of magnetic field has a positive effect on thermal performance. The results of this study can be useful in the design of heat exchangers.

Keywords

Main Subjects


[1] Saidur, R. Leong, K. Y. and Mohammed, H. A. (2011) A review on applications and challenges of nanofluids. Renew. Sustain. Energy Rev, 15, 1646–1668.  
[2] Arora, N. Gupta, M. (2022) An experimental study on heat transfer and pressure drop analysis of Al2O3/water nanofluids in a circular tube. Mater. Today Proc, 69, 199-204.
 [3] Avinash-Kumar, R. Kavitha, M. and Manoj Kumar, P. (2021) Numerical study of graphene-platinum hybrid nanofluid in microchannel for electronics cooling, Proc. Inst. Mech. Eng. Pt. C J. Mechan. Eng. Sci, 235, 5845-5857.
[4] Moslemi, M. Mahmoodnezhad, M. Edalatpanah, SA. Mohammed-Zubair, SA. Wahed-Khalifa, HA. (2023) Magnetic Field Effect and Heat Transfer of Nanofluids within Waveform Microchannel. Comput. Model. Eng. Sci, 134. 1957–1973.
[5] Moradi, T. Shahbazian, H. Hoseinalipour, M. Sunden, B. (2023) Effects of wavy ribs on vortex generation and thermal-hydraulic performance in a rotating rectangular channel. Appl. Therm. Eng, 222. 119952.
[6] Mehta, S.K. Pati, S. and Baranyi, L. (2022) Effect of amplitude of walls on thermal and hydrodynamic characteristics of laminar flow through an asymmetric wavy channel. Case Stud. Therm. Eng, 31. 101796.
[7] جمارانی، ع.، معرفت، م.، اسحق نیموری، م. (2015) معرفی تعریف عدد ناسلت مناسب برای جریان سیال در یک لوله‌ با ماده متخلخل جزئی. نشریه مهندسی مکانیک مدرس. 15 (6)، 278-286.
[8] Yaerramlle, V. Premachandran, B. and Talukdar, P. (2021) Mixed Convection From a Heat Source in a Channel with a Porous Insert: A Numerical Analysis Based on Local Thermal Non-Equilibrium Model. Therm. Sci. Eng. Prog, 25. 101010.
[9] پورموید، ع.، ولی­پور، م. ص.، رحمتی، ع.، و رحمانی، ر. (2014). بررسی عددی تأثیرات میدان مغناطیسی مماسی و ثابت بر جریان و انتقال حرارت از یک استوانه پوشیده شده با نوار متخلخل، نشریه مکانیک سازه­ها و شاره­ها. 4 (4)، 191-205.
[10] Ibrahim, M. Saeed, T. Bani, F.R. Sedeh, S.N. Chu, Y. M. and Toghraie, D. (2021) Two-phase Analysis of Heat Transfer and Entropy Generation of Water-based Magnetite Nanofluid Flow in a Circular Microtube with Twisted Porous Blocks under a Uniform Magnetic Field. Powder Technol, 384. 522–541.
[11] رحمتی، ا.، نجارنظامی، ا. (2017). شبیه­سازی جریان جابجایی طبیعی نانوسیال در یک محفظه شیبدار تحت میدان مغناطیسی به روش شبکه بولتزمن، نشریه مهندسی مکانیک امیرکبیر. 49 (3)، 604-595.
[12] Kefayati, GH. R. (2013) Lattice Boltzmann simulation of MHD natural convection in a nano fl uid- fi lled cavity with sinusoidal temperature distribution. Powder Technol, 243. 171-183.
[13] Bhattacharyya, S. Sharma, AK. Vishwakarma, DK. Goel, V. (2023) Influence of magnetic baffle and magnetic nanofluid on heat transfer in a wavy minichannel. Sustain. Energy Technol. Assessments, 56. 102954. 
[14] Benos, L. and Sarris, I.E. (2019) Analytical Study of the Magnetohydrodynamic Natural Convection of a Nanofluid Filled Horizontal Shallow Cavity with Internal Heat Generation. Int. J. Heat Mass Transf, 130. 862-873.
[15] Erdem, M. and Varol, Y. (2020) Numerical Investigation of Heat Transfer and Flow Characteristics of MHD Nano-fluid Forced Convection in a Pipe, J. Therm. Anal. Calorim, 139. 3879–3909.        
[16] Han, L. Lu, C. Yumashev, A. Bahrami, D. Kalbasi, R. Jahangiri, M. and Mosavi, A. (2021) Numerical investigation of magnetic field on forced convection heat transfer and entropy generation in a microchannel with trapezoidal ribs. Eng. Appl. Comput. Fluid Mech, 15. 1746–1760.  
[17] Kalpana, G. Madhura, KR. and Kudenatti, RB. (2022) Magnetohydrodynamic boundary layer flow of hybrid nanofluid with the thermophoresis and Brownian motion in an irregular channel: A numerical approach. Eng. Sci. Technol, 32. 101075.
[18] Elsaid, EM. and Abdel-wahed. (2022)MHD mixed convection Ferro Fe3O4/Cu-hybrid-NF runs in a vertical channel. Chin. J. Phys, 76 . 269–282.
[19] Mohammadi, S. Azimi, N. and Khazaei M. (2022) CFD simulation of the effect of magnetic field on convective heat transfer and ferrofluid flow inside a pipe. J. Mode . Engine, 20. 155–166.
 
[20] Sheikhpour N, Mirabdolah Lavasani A, Salehi G (2022) Study the Effects of Magnetic Field and Porous Medium on Heat Transfer and Flow of a Nanofluid in a Wavy Channel. J. Mode . Engine, 20 (71): 13–25.
[21] Demagh, Y. Bordja, I. Kabar, Y. and Benmoussa, H. (2015) A design method of an S-curved parabolic trough collector absorber with a three-dimensional heat flux density distribution. Sol. Energy, 122. 873-884.
[22] نوری، ر.، گرجی، م.، دمیری گنجی، د. (2014). بررسی عددی اثر میدان مغناطیسی بر انتقال حرارت اجباری نانوسیال در یک کانال سینوسی شکل، نشریه مهندسی مکانیک مدرس. 13 (14)، 43-55.
[23] Ashorynejad H.R. and Zarghami (2018) A. Magnetohydrodynamics flow and heat transfer of Cu-water nanofluid through a partially porous wavy channel. Int. J. Heat Mass Transf, 119 .247-258.
[24] Nazari, S. and Toghraie, D. (2017) Numerical simulation of heat transfer and fluid flow of Water-CuO Nanofluid in a sinusoidal channel with a porous medium. Physica E, 87. 134–140.
[25] Kays, W.M. and London, AL.Compact heat exchangers. 3rd ed. Melbourne. Kreiger Publishing, 1984.
[26] Khoshvaght-Aliabadi, M. (2014) Influence of different design parameters and Al2O3-water nanofluid flow on heat transfer and flow characteristics of sinusoidal-corrugated channels. Energy Convers Manag, 88. 96–105.
[27] Mceuen, P.L. Fuhrer, M.S. and Park H. (2002) Single-Walled Carbon Nanotube Electronics. IEEE Trans. Nanotechnol, 1. 78-85.
[28] Minea A.A. and El-Maghlany W.M. (2018) Influence of hybrid nanofluids on the performance of parabolic trough collectors in solar thermal systems: recent findings and numerical comparison. Renew. Energy, 120. 350–364.
[29] A. Fluent, (2011) Ansys fluent theory guide, ANSYS Inc., USA, vol. 15317, pp. 724–746.
[30] Silva R.A. and De Lemos, M.J.S. (2003) Turbulent flow in a channel occupied by a porous layer considering the stress jump at the interface. Int. J. Heat Mass Transf, 46. 5113-5121.