Experimental and numerical investigating of distribution of thickness, drawing depth and forming limit diagram of steel sheet using Nakazima test

Authors

1 Faculty of Mechanics K.N.Toosi University

2 K.N.Toosi university

3 Associate Professor, Faculty of Mechanical Engineering, K. N. Toosi University of Technology

10.22044/jsfm.2024.13456.3772

Abstract

In this article, the mechanical properties of stainless steel are measured at different strain rates. Then, considering the Swift work-hardness equation, the forming limit diagram (FLD) of the sheet has been obtained with two experimental and finite element methods. After designing the experiment based on Box-Behnken method and performing them using the finite element method (FEM), the effect of the input parameters of the radius of the die opening, the distance between the punch and the die, the force of the plate holder, the cutting direction of the primary blank relative to the rolling direction and the coefficient of friction has been obtained on the depth of the product without tearing. Finally, the optimal parameters to achieve the maximum stretching depth have been extracted. After defining the properties extracted from the steel sheet in the software, in order to validate and ensure the accuracy of the finite element analysis, the thickness distribution in a certain path on the experimental product has been compared with the finite element. After designing the experiments and conducting them using the FEM, it was found that in the investigated range, the clearance between the punch and the die has no effect on the depth of tension; Also, by increasing the radius of the opening of the die, the depth of stretching increases. The coefficient of friction has the greatest effect on the depth of stretching and with its decrease, the depth of stretching increases.

Keywords

Main Subjects


[1] Tebbe, P. A., & Kridli, G. T. (2004). Warm forming of aluminium alloys: an overview and future directions. IJMPT, 21(1-3), 24-40.
[2] Ghennai, W., Boussaid, O., Bendjama, H., Haddag, B., & Nouari, M. (2019). Experimental and numerical study of DC04 sheet metal behaviour—plastic anisotropy identification and application to deep drawing. JAMT, 100, 361-371.
[3] Singh, C. P., & Agnihotri, G. (2015). Study of deep drawing process parameters: a review. IJSRP, 5(2), 1-15.
[4] Swapna, D., Ch, S. R., & Radhika, S. (2018). A review on deep drawing process. IJERMT, 6(6), 146-149.
[5] Keeler, S. P. (1961). Plastic instability and fracture in sheets stretched over rigid punches (Doctoral dissertation, Massachusetts Institute of Technology.
[6] Bleck, W., Deng, Z., Papamantellos, K., & Gusek, C. O. (1998). A comparative study of the forming-limit diagram models for sheet steels. J. Mater. Process. Technol., 83(1-3), 223-230.
[7] Ozturk, F., & Lee, D. (2004). Analysis of forming limits using ductile fracture criteria. J. Mater. Process. Technol, 147(3), 397-404.
[8] Obermeyer, E. J., & Majlessi, S. (1998). A review of recent advances in the application of blank-holder force towards improving the forming limits of sheet metal parts. J. Materials Processing Techno., 75(1-3), 222-234.
[9] Fourment, L., & Chenot, J. L. (1996). Optimal design for non‐steady‐state metal forming processes—I. Shape optimization method. INT J NUMER METH ENG, 39(1), 33-50.
[10] Graf, A. F., & Hosford, W. F. (1993). Calculations of forming limit diagrams for changing strain paths. Metall. Mater. Trans. A, 24(11), 2497-2501.
[11] Kim, H. S., Koç, M., & Ni, J. (2008). Development of an analytical model for warm deep drawing of aluminum alloys. J. Mater. Process. Technol., 197(1-3), 393-407.
[12] Zabala, A., de Argandoña, E. S., Cañizares, D., Llavori, I., Otegi, N., & Mendiguren, J. (2022). Numerical study of advanced friction modelling for sheet metal forming: Influence of the die local roughness. Tribol. Int., 165, 107259.
[13] Sen, N., & Kurgan, N. (2016). Improving deep drawability of HC300LA sheet metal by warm forming. JAMT, 82, 985-995.
[14] Alharthi, H., Hazra, S., Alghamdi, A., Banabic, D., & Dashwood, R. (2018). Determination of the yield loci of four sheet materials (AA6111-T4, AC600, DX54D+ Z, and H220BD+ Z) by using uniaxial tensile and hydraulic bulge tests. JAMT, 98, 1307-1319.
[15] Zhang, H., Qin, S., & Cao, L. (2021). Investigation of the effect of blank holder force distribution on deep drawing using developed blank holder divided into double rings. J. Braz. Soc., 43(6), 284.
 
[16] Brnic, J., Niu, J. T., Turkalj, G., Canadija, M., & Lanc, D. (2010). Experimental determination of mechanical properties and short-time creep of AISI 304 stainless steel at elevated temperatures. IJMMM, 17(1), 39-45
[17] Hosford, W. F., & Caddell, R. M. (2011). Metal forming: mechanics and metallurgy. Cambridge university press.
[18] Gulati, V., Aryal, A., Katyal, P., & Goswami, A. (2016). Process parameters optimization in single point incremental forming. Inst. Eng. (India): C, 97, 185-193.
[19] Paul, S. K. (2021). Controlling factors of forming limit curve: A review. Adv. Ind. Manuf. Eng., 2, 100033.
[20] Keeler, S. P. (1961). Plastic instability and fracture in sheets stretched over rigid punches (Doctoral dissertation, Massachusetts Institute of Technology).
[21] Hu, J., Marciniak, Z., & Duncan, J. (Eds.). (2002). Mechanics of sheet metal forming. Elsevier.
[22] Wankhede, P., & Suresh, K. (2020). A review on the evaluation of formability in sheet metal forming. Adv. Mater. Process. Technol., 6(2), 458-485.
[23] Davim, J. P. (Ed.). (2012). Computational Methods for Optimizing Manufacturing Technology: Models and Techniques: Models and Techniques. IGI Global.
[24] Assempour, A., Nejadkhaki, H. K., & Hashemi, R. (2010). Forming limit diagrams with the existence of through-thickness normal stress. CMS, 48(3), 504-508.
[25] AutoForm Engineering GmbH, Unterdorfstrasse 12, Postfach, 8808 Pfäffikon SZ, Switzerland