Investigating the direct absorption planar collector with a central absorber tube for simultaneous surface and volume absorption and the effect of carbon nanofluid in improving thermal performance

Authors

1 Department of Mechanical engineering, Central Tehran Baranch, Islamic Azad University, Tehran, Iran

2 Assist. Prof., Department of Mechanical Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran

3 Department of Mechanical Engineering, Islamic Azad University Central Tehran Branch, Tehran, Iran

Abstract

The purpose of this work is to investigate a different geometry in the parabolic collector in order to increase the thermal efficiency through simultaneous surface and volume absorption in a combined condition. Recently, it has been observed that if the inlet temperature is above 250 °C, Direct absorption collectors can increase efficiency up to 10% Considering that there is a direct relationship between the concentration of nanofluid and the diameter of the transparent tube carrying the fluid with the absorption coefficient, On the other hand, as the concentration of nanofluid increases, fluid sedimentation and system maintenance problems occur. In this research, the amount of nanocarbon used as a suspension of 0.02 gr/l in oil base fluid is considered. According to experimental data, this amount of nano carbon concentration completely absorbs light rays at a depth of 24 (mm) and this absorption coefficient has been used for this specific geometry of the collector. The results show that the rest of the radiation is absorbed on the surface using the central tube, so that the thermal efficiency is up to 6% compared to the usual copper absorption collector, which is about 19 degrees Kelvin.

Keywords

Main Subjects


[1] Yılmaz, İ. H., & Mwesigye, A. J. A. e. (2018). Modeling, simulation and performance analysis of parabolic trough solar collectors: A comprehensive review. 225, 135-174..
[2] Arai, N., Itaya, Y., & Hasatani, M. J. S. E. (1984). Development of a “volume heat-trap” type solar collector using a fine-particle semitransparent liquid suspension (FPSS) as a heat vehicle and heat storage medium Unsteady, one-dimensional heat transfer in a horizontal FPSS layer heated by thermal radiation. 32(1), 49-56.
[3] Peng, W., Sadaghiani, O. K. J. T. S., & Progress, E. (2020). Using a sunrays trap in direct-absorption solar collector (DASC) to enhance the thermal efficiency of collector. 20, 100740.
[4] Qin, C., Kim, J. B., & Lee, B. J. J. R. E. (2019). Performance analysis of a direct-absorption parabolic-trough solar collector using plasmonic nanofluids. 143, 24-33.
[5] Tyagi, H., Phelan, P., & Prasher, R. (2009). Predicted efficiency of a low-temperature nanofluid-based direct absorption solar collector.
[6] Otanicar, T. P., Phelan, P. E., Prasher, R. S., Rosengarten, G., Taylor, R. A. J. J. o. r., & energy, s. (2010). Nanofluid-based direct absorption solar collector. 2(3).
[7] Polvongsri, S., & Kiatsiriroat, T. J. H. t. e. (2014). Performance analysis of flat-plate solar collector having silver nanofluid as a working fluid. 35(13), 1183-1191.
[8] Otanicar, T. P., Phelan, P. E., & Golden, J. S. J. S. E. (2009). Optical properties of liquids for direct absorption solar thermal energy systems. 83(7), 969-977..
[9] Yousefi, T., Veisy, F., Shojaeizadeh, E., Zinadini, S. J. E. t., & science, f. (2012). An experimental investigation on the effect of MWCNT-H2O nanofluid on the efficiency of flat-plate solar collectors. 39, 207-212.
[10] Kasaeian, A., Daneshazarian, R., Rezaei, R., Pourfayaz, F., & Kasaeian, G. J. J. o. C. P. (2017). Experimental investigation on the thermal behavior of nanofluid direct absorption in a trough collector. 158, 276-284.
[11] Menbari, A., & Alemrajabi, A. A. J. O. M. (2016). Analytical modeling and experimental investigation on optical properties of new class of nanofluids (Al2O3–CuO binary nanofluids) for direct absorption solar thermal energy. 52, 116-125.
[12] Menbari, A., Alemrajabi, A. A., Rezaei, A. J. E. T., & Science, F. (2017). Experimental investigation of thermal performance for direct absorption solar parabolic trough collector (DASPTC) based on binary nanofluids. 80, 218-227.
[13] Karami, M., Akhavan-Bahabadi, M., Delfani, S., Raisee, M. J. R., & Reviews, S. E. (2015). Experimental investigation of CuO nanofluid-based direct absorption solar collector for residential applications. 52, 793-801.
[14] Vakili, M., Hosseinalipour, S., Delfani, S., Khosrojerdi, S., & Karami, M. J. S. E. (2016). Experimental investigation of graphene nanoplatelets nanofluid-based volumetric solar collector for domestic hot water systems. 131, 119-130.
[20] Qin, C., Kim, J. B., & Lee, B. J. J. R. E. (2019). Performance analysis of a direct-absorption parabolic-trough solar collector using plasmonic nanofluids. 143, 24-33.
[15]. Jeter, S. M. J. S. E. (1986). Calculation of the concentrated flux density distribution in parabolic trough collectors by a semifinite formulation. 37(5), 335-345.
[16] Forristall, R. (2003). Heat transfer analysis and modeling of a parabolic trough solar receiver implemented in engineering equation solver. Retrieved from
[17] Kalogirou, S. A. J. E. (2012). A detailed thermal model of a parabolic trough collector receiver. 48(1), 298-306.
[18] Otanicar, T. P., Phelan, P. E., Prasher, R. S., Rosengarten, G., Taylor, R. A. J. J. o. r., & energy, s. (2010). Nanofluid-based direct absorption solar collector. 2(3).
[20] Qin, C., Kim, J. B., & Lee, B. J. J. R. E. (2019). Performance analysis of a direct-absorption parabolic-trough solar collector using plasmonic nanofluids. 143, 24-33.
[19] O’Keeffe, G., Mitchell, S., Myers, T., Cregan, V. J. I. J. o. H., & Transfer, M. (2018). Modelling the efficiency of a low-profile nanofluid-based direct absorption parabolic trough solar collector. 126, 613-624.
[20] Joseph, A., Sreekumar, S., & Thomas, S. J. R. E. (2020). Energy and exergy analysis of SiO2/Ag-CuO plasmonic nanofluid on direct absorption parabolic solar collector. 162, 1655-1664.
[21] Bortolato, M., Dugaria, S., Agresti, F., Barison, S., Fedele, L., Sani, E., . . . management. (2017). Investigation of a single wall carbon nanohorn-based nanofluid in a full-scale direct absorption parabolic trough solar collector. 150, 693-703.
[22] Xu, G., Chen, W., Deng, S., Zhang, X., & Zhao, S. J. N. (2015). Performance evaluation of a nanofluid-based direct absorption solar collector with parabolic trough concentrator. 5(4), 2131-2147.
[23] Forristall, R. (2003). Heat transfer analysis and modeling of a parabolic trough solar receiver implemented in engineering equation solver. Retrieved from
[24] Dudley, V. E., Kolb, G. J., Mahoney, A. R., Mancini, T. R., Matthews, C. W., Sloan, M., & Kearney, D. (1994). Test results: SEGS LS-2 solar collector. Retrieved from