[1] TaleshAmiri, S., Shafaghat, R., Mohebbi, M., Mahdipour, M. A., & Esmaeili, M. (2021). Power Enhancement of a Heavy-Duty Rail Diesel Engine Considering the Exhaust Gas and ancillary facilities Temperature Limitation: A Feasibility Study. Int. J. Maritime Tech., 15, 107-118.
[2] Chidambaram, A. R., & Krishnasamy, A. (2022). Investigations on Dual Fuel Reactivity Controlled Compression Ignition Engine using Alternative Fuels Produced from Waste Resources (No. 2022-01-1095). SAE Technical Paper..
[3] Elkelawy, M., Etaiw, S. E. D. H., Ayad, M. I., Marie, H., Dawood, M., Panchal, H., & Bastawissi, H. A. E. (2021). An enhancement in the diesel engine performance, combustion, and emission attributes fueled by diesel-biodiesel and 3D silver thiocyanate nanoparticles additive fuel blends. J. the Taiwan Instit. Chem. Eng., 124, 369-380..
[4] Pinto, A. C., Guarieiro, L. L., Rezende, M. J., Ribeiro, N. M., Torres, E. A., Lopes, W. A., ... & Andrade, J. B. D. (2005). Biodiesel: an overview. J. Brazilian Chem. Society, 16, 1313-1330..
[5] Lee, I., Johnson, L. A., & Hammond, E. G. (1995). Use of branched-chain esters to reduce the crystallization temperature of biodiesel. J. the American Oil Chem. Soc., 72, 1155-1160.
[6] Gaur, A., Dwivedi, G., Baredar, P., & Jain, S. (2022). Influence of blending additives in biodiesel on physiochemical properties, engine performance, and emission characteristics. Fuel, 321, 124072.
[7] Elkelawy, M., El Shenawy, E. A., Bastawissi, H. A. E., Shams, M. M., & Panchal, H. (2022). A comprehensive review on the effects of diesel/biofuel blends with nanofluid additives on compression ignition engine by response surface methodology. Energy Conversion and Management: X, 14, 100177..
[8] Ojapah, M. M., & Diemuodeke, E. O. (2023). Effect of palm oil biodiesel blends on engine emission and performance characteristics in an internal combustion engine. Open J. Energ. Effic., 1(1), 13-24..
[9] Öztürk, E. and Ö. Can, Effects of EGR, injection retardation and ethanol addition on combustion, performance and emissions of a DI diesel engine fueled with canola biodiesel/diesel fuel blend. Energy, 2022. 244: p. 123129.
[10] Shelke, P.S., N.M. Sakhare, and S. Lahane, Investigation of combustion characteristics of a cottonseed biodiesel fuelled diesel engine. Procedia Technology, 2016. 25: p. 1049-1055.
[11] El-Seesy, A.I., H. Hassan, and S. Ookawara, Effects of graphene nanoplatelet addition to jatropha Biodiesel–Diesel mixture on the performance and emission characteristics of a diesel engine. Energy, 2018. 147: p. 1129-1152.
[12] Özbay, N., N. Oktar, and N.A. Tapan, Esterification of free fatty acids in waste cooking oils (WCO): Role of ion-exchange resins. Fuel, 2008. 87(10-11): p. 1789-1798.
[13] Hribernik, A. and B. Kegl, Performance and exhaust emissions of an indirect-injection (IDI) diesel engine when using waste cooking oil as fuel. Energy & fuels, 2009. 23(3): p. 1754-1758.
[14] Plamondon, E. and P. Seers, Parametric study of pilot–main injection strategies on the performance of a light-duty diesel engine fueled with diesel or a WCO biodiesel–diesel blend. Fuel, 2019. 236: p. 1273-1281.
[15] Venugopal, I.P., D. Balasubramanian, and A. Rajarajan, Potential improvement in conventional diesel combustion mode on a common rail direct injection diesel engine with PODE/WCO blend as a high reactive fuel to achieve effective Soot-NOx trade-off. J. of Cleaner Production, 2021. 327: p. 129495.
[16] Kassem, Y. and H. Çamur, A laboratory study of the effects of wide range temperature on the properties of biodiesel produced from various waste vegetable oils. Waste and biomass valorization, 2017. 8(6): p. 1995-2007.
[17] Bahari, R., Shafaghat, R., Jahanian, O., & Ghaedi, A. (2022). The influence of biodiesel with high saturated fatty acids on the performance of a CI engine fuelled by diesel and biodiesel blend fuels at low loads. Int. J. Amb. Energ., 43(1), 7643-7656..
[18] Tayari, S., R. Abedi, and A. Rahi, Comparative assessment of engine performance and emissions fueled with three different biodiesel generations. Renewable Energy, 2020. 147: p. 1058-1069.
[19] Adhikesavan, C., D. Ganesh, and V.C. Augustin, Effect of quality of waste cooking oil on the properties of biodiesel, engine performance and emissions. Cleaner Chemical Engineering, 2022. 4: p. 100070.
[20] Jafarihaghighi, F., Bahrami, H., Ardjmand, M., & Mirzajanzadeh, M. (2021). Combustion, performance, emission and fatty acid profiles analysis of third generation biodiesels obtained from a recycle and fresh feedstock: a comparative assessment. Int. J. Sust. Eng., 14(6), 2114-2125.
[21] Pinzi, S., Rounce, P., Herreros, J. M., Tsolakis, A., & Dorado, M. P. (2013). The effect of biodiesel fatty acid composition on combustion and diesel engine exhaust emissions. Fuel, 104, 170-182.
[22] Puhan, S., Saravanan, N., Nagarajan, G., & Vedaraman, N. (2010). Effect of biodiesel unsaturated fatty acid on combustion characteristics of a DI compression ignition engine. Biomass and Bioenergy, 34(8), 1079-1088.
[23] Maiboom, A., X. Tauzia, and J.-F. Hétet, (2008) Experimental study of various effects of exhaust gas recirculation (EGR) on combustion and emissions of an automotive direct injection diesel engine. Energy,. 33(1): p. 22-34.
[24] Gad, M., et al., (2020) Enhancing the combustion and emission parameters of a diesel engine fueled by waste cooking oil biodiesel and gasoline additives. Fuel, 269: p. 117466.
[25] Shafaghat, R., S. Talesh Amiri, and O. Jahanian, (2020) Numerical Study of the Effect of Adding Water with Different Temperatures to Low-Reactivity Fuel in a Reactivity Controlled Compression Ignition (RCCI) Engine. Fuel and Combustion, 13(4): p. 43-62.
[26] Palash, S. M., Kalam, M. A., Masjuki, H. H., Masum, B. M., Fattah, I. R., & Mofijur, M. (2013). Impacts of biodiesel combustion on NOx emissions and their reduction approaches. Renewable and Sustainable Energy Reviews, 23, 473-490..
[27] T Talesh Amiri, S., Shafaghat, R., Jahanian, O., & Fakhari, A. H. (2021). Numerical investigation of reactivity controlled compression ignition engine performance under fuel aggregation collision to piston bowl rim edge situation. Iranian (Iranica) J. Energy & Environment, 12(1), 10-17.
[28] Fakhari, A. H., Shafaghat, R., Jahanian, O., Ezoji, H., & Motallebi Hasankola, S. S. (2020). Numerical simulation of natural gas/diesel dual-fuel engine for investigation of performance and emission. J. Therm. Analy. Calorim., 139, 2455-2464.
[29] Kumar, M.S., K. Arul, and N. Sasikumar, (2019) Impact of oxygen enrichment on the engine's performance, emission and combustion behavior of a biofuel based reactivity controlled compression ignition engine. J. Energ. Instit., 92(1): p. 51-61.
[30] Gautam, P.S., P.K. Vishnoi, and V. Gupta, (2022) A single zone thermodynamic simulation model for predicting the combustion and performance characteristics of a CI engine and its validation using statistical analysis. Fuel, 315: p. 123285.
[31] Li, J., W. Yang, and D. Zhou, (2017) Review on the management of RCCI engines. Renewable and Sustainable Energy Reviews, 69: p. 65-79.
[32] Vickers, N.J., (2017) Animal communication: when i’m calling you, will you answer too? Current biology, 27(14): p. R713-R715.
[33] Bartok, W. and A.F. Sarofim, (1991) Fossil fuel combustion: a source book.
[34] Jahanian, O. and S. Jazayeri, (2012) A comprehensive numerical study on effects of natural gas composition on the operation of an HCCI engine. Oil & Gas Science and Technology–Revue d’IFP Energies nouvelles, 67(3): p. 503-515.
[35] Ranzi, E., Frassoldati, A., Stagni, A., Pelucchi, M., Cuoci, A., & Faravelli, T. (2014). Reduced kinetic schemes of complex reaction systems: fossil and biomass‐derived transportation fuels. Int. J. Chem. Kinetics, 46(9), 512-542.
[36] Catapano, A. L., Reiner, Ž., De Backer, G., Graham, I., Taskinen, M. R., Wiklund, O., ... & Wood, D. (2011). ESC/EAS Guidelines for the management of dyslipidaemias: the Task Force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and the European Atherosclerosis Society (EAS). Atherosclerosis, 217(1), 3-46.