Performance analysis of a micro gas turbine power supply unit including an atmospheric solid oxide fuel cell from thermo-economic viewpoint.

Author

Abstract

The purpose of this study is performance analysis of a micro gas turbine power supply unit including an atmospheric solid oxide fuel cell from thermo-economic viewpoint. Since the fuel cell is the main source of power generation in hybrid systems, in this study, complete electrochemical, thermal and thermodynamic calculations are performed to obtain more accurate results; and unlike most studies, the cell temperature is not assumed constant. The performance analysis of the hybrid system shows that increasing the pressure and air to fuel ratio, causes to loss of electrical efficiency and increase in the electricity price because of reduction in cell and turbine inlet gas temperatures. Also, the economical investigation results confirms that the system electricity price in an optimum case is about 12.2 cents based on lazaretto method and 19.5 cents based on TRR method. the installation and preparation cost for hybrid system is about 500- 600 dollar per kilowatt.

Keywords

Main Subjects


[1] Williams MC (2002) Fuel cell handbook. US Department of Energy, Virginia.
[2] Bove R, Ubertini S (2008) Modeling solid oxide fuel cells, methods, procedures and techniques. Springer, Netherlands Publisher.
[3] Gillette F (2006) CHP Case Studies-Saving Money and Increasing Security. Capstone Turbine Corporation.
[4] www.Capstoneturbine.com.
[5] پیرکندی ج، قاسمی م، حامدی م ح (1389) معرفی   سیستم­های هیبریدی توربین­گاز و پیل­سوختی اکسیدجامد جهت تامین انرژی. مجله علمی ترویجی مهندسی مکانیک 19(74):14 تا 22.
[6] Massardo AF, Magistri L (2003) Internal reforming solid oxide fuel cell gas turbine combined cycles (IRSOFC-GT)-Part II: Exergy and thermoeconomic analyses. Journal of Engineering for Gas Turbines and Power 125: 67–74.
[7] Noren DA (2007) Thermoeconomic simulation of solid oxide fuel cell/gas turbine hybrid systems for distributed tri-generation. Ph.D Thesis, University of California,  Davis.
[8] Arsalis A (2007) Thermo economic  modeling and parametric study of hybrid solid oxide fuel cell – gas turbine – steam turbine power plants ranging from 1.5 MWe to 10 MWe. M.Sc. thesis, Virginia Polytechnic Institute and State University.
[9] Arsalis A (2008) Thermoeconomic modeling and parametric study of hybrid SOFC–gas turbine–steam turbine power plants ranging from 1.5 to 10MWe. Journal of Power Sources 181: 313–326.
[10] Franzoni A, Magistri L, Traverso A, Massardo AF (2008) Thermoeconomic analysis of pressurized hybrid SOFC systems with CO2 separation. Energy 33: 311–320.
[11] Santin M, Traverso A, Magistri L, Massardo A (2010) Thermoeconomic analysis of SOFC-GT hybrid systems fed by liquid fuels. Journal of Energy 35: 1077–1083.
[12] Cheddie DF, Murray R (2010) Thermo-economic modeling of a solid oxide fuel cell/gas turbine power plant with semi-direct coupling and anode recycling. International Journal of Hydrogen Energy 35: 11208–11215.
[13] Cheddie DF, Murray R (2010) Thermo-economic modeling of an indirectly coupled solid oxide fuel cell/gas turbine hybrid power plant. Journal of Power Sources 195: 8134–8140.
[14] Cheddie DF (2011) Thermo - economic optimization of an indirectly coupled solid oxide fuel cell/gas turbine hybrid power plant. International Journal of Hydrogen Energy 36: 1702–1709.
[15] Shirazi A, Aminyavari M, Najafi B, Rinaldi F, Razaghi M (2012) Thermal-economic-environmental analysis and multi-objective optimization of an internal-reforming solid oxide fuel cell-gas turbine hybrid system. International Journal of Hydrogen Energy 37: 19111–19124.
[16] Bejan A, Tsatsaronis G, Moran M (1996) Thermal design and optimization. John Wiley& Sons.
[17] Haseli Y, Dincer I, Naterer GF (2008) Thermodynamic analysis of a combined gas turbine power system with a solid oxide fuel cell through exergy. Journal of Thermochimica Acta 480: 1–9.
[18] Akkaya AV (2007) Electrochemical Model for Performance Analysis of a Tubular SOFC. International Journal of Energy Research 31: 79–98.
[19] پیرکندی ج، قاسمی م، حامدی م ح (1390) تحلیل عملکرد ترمودینامیکی یک چرخه هیبریدی پیل­سوختی اکسید جامد و میکروتوربین­گازی در یک سیستم تولید همزمان. نشریه علمی-پژوهشی سوخت و احتراق 4(2):67-89.
[20] قنبری باورصاد پ (1385) مدل­سازی و بررسی عملکرد سیستم هیبرید پیل سوختی اکسید جامد و توربین گاز از دیدگاه انرژی و اگزرژی. پایان نامه کارشناسی ارشد، تهران، دانشگاه صنعتی شریف.
[21] Kotas TJ (1995) The exergy method of thermal plant analysis. Krieger Publishing Company, Florida.
[22] Ciesar JA (2001) Hybrid Systems Development by The Siemens Westinghouse Power Corporation. Presented by Siemens Westinghouse Power Corporation, Natural Gas/Renewable Energy Hybrids Workshop.
[23] پیرکندی ج، قاسمی م (1392) مدل­سازی و آنالیز ترمواکونومیکی یک نیروگاه سیکل ترکیبی پیل­سوختی و میکروتوربین­گازی. نشریه علمی-پژوهشی مهندسی مکانیک مدرس 13(15):207-222.