Investigating the effect of turbulator, nanofluid and geometry on the thermal performance of shell and tube heat exchangers

Authors

1 Assoc. Prof., Department of Mechanical Engineering, University of Kashan, Kashan, Iran

2 Mech. Eng. Dep., Univ. of Kashan, Kashan

Abstract

the shell and tube heat exchanger with the percentage of baffle cutting and the number of different tube passes in four different modes (use of water fluid on the shell side and tube containing supercritical carbon dioxide gas without the presence of turbulator, use of water fluid on the shell side and tube containing supercritical carbon dioxide gas with the presence of turbulator, the use of water-aluminum oxide nanofluid on the side of the shell and tube containing supercritical carbon dioxide gas without the presence of turbulator and also the use of water-aluminum oxide nanofluid on the side of the shell and tube containing supercritical carbon dioxide gas with the presence of an turbulator) are studied using HTRI software. The results show that the highest value of the heat transfer coefficient on the shell side and, as a result, the appropriate thermal efficiency is related to the case where the baffle cut is 30%. On the other hand, with the increase in nanofluid concentration, the pressure drop on the shell side increases from 4.48 to 5.66%. the results show that the use of a microfin turbulator is more suitable than a twisted tape turbulator and the use of a microfin turbulator increases the heat transfer coefficient on the shell side by 5.76 to 12.77% compared to the use of a twisted tape turbulator. Also, it increases the heat transfer coefficient of the pipe side by 62 and 78% on average, respectively, compared to the case without the turbulator.

Keywords

Main Subjects


[1] Antonopoulou, C., Gkountas, A., Atsonios, K., Bakalis, P., Skiadopoulos, A., Grammelis, P., and Manolakos, D., (2023), Parametric Analysis of Heat Source and Sink and Design of Heat Exchangers for Trilateral Flash Cycle (TFC), 8th World Congress on Momentum, Heat and Mass Transfer (MHMT'23).
[2] Razzaghi, M. J. P., Daemiashkezari, M., Abdulfattah, A. N., Afrouzi, H. H., and Ahmad, H., (2022), Thermo-hydraulic performance evaluation of turbulent flow and heat transfer in a twisted flat tube: A CFD approach. Case Stud. Therm. Eng., 102107.
[3] Xifeng, W., Xiaoluan, Z., Mahariq, I., Salem, M., Ghalandari, M., Ghadak, F., and Abedini, M., (2022), Performance Optimization of the Helical Heat Exchanger With Turbulator. Front. Energy Res., 9, 789316.
[4] Sanserwal, M., Yadav, D., Bhardwaj, M., and Singh, G., (2022), Enhancing the thermal performance of a double pipe heat exchanger in turbulent flow conditions. Int. J. Thermodyn., 25(2), 99-111.
[5] Aminifar, F., Ghafouri, A., and Falavand Jozaei, A., (2020), Experimental Investigation of Hydro-Thermodynamics Performance of Shell and Tube Heat Exchanger Using Nanofluid, Triangular-Cut Twisted Tape and Corrugated Pipes. Modares Mechanical Engineering, 20(10), 2593-2603.
 [6] کیا، س. م.، نوبختی، م.ح. و خیاط، م.، (1399)،  بررسی تجربی انتقال حرارت و افت فشار نانوسیال پایه روغن-اکسد الومینیوم در لوله مارپیچ و مشاهده تاثیر توربولاتور بر عملکرد مبدل حرارتی پوسته و لوله، فصلنامه مهندسی مکانیک تبدیل انرژی، (3)20،7-1.
[7] دستمالچی، م.، شیخ زاده، ق.ع. و عارف منش، ع.، (1399)،  مطالعه تجربی انتقال حرارت جریان نانوسیال آب-اکسید آلومینیوم در لوله‌های مارپیچ میکروفین‌دار، نشریه مهندسی مکانیک امیرکبیر، (2)524،52-509.
[8] Singh S. K., and Sarkar, J., (2020), Improving hydrothermal performance of hybrid nanofluid in double tube heat exchanger using tapered wire coil turbulator, Adv. Powder Technol., 31(5), 2092-2100.
[9] Fares, M., Mohammad, A. M., and Mohammed, A. S. , (2020), Heat transfer analysis of a shell and tube heat exchanger operated with graphene nanofluids. Case Stud. Therm. Eng., 18, 100584.
[10] Yılmaz İ. H., Mwesigye A., and Göksu, T. T., (2020), Enhancing the overall thermal performance of a large aperture parabolic trough solar collector using wire coil inserts, Sustain. Energy Technol. Assess., 39, 100696.
 
[11] Kayabasi, E., Alperen, M. A., and Kurt, H., (2019), The effects of component dimensions on heat transfer and pressure loss in shell and tube heat exchangers. Int. J. Green Energy, 16(2), 200-210.
[12] اندامی، ز.، ویسی، ف. و نوروزی، ل.، (1398)،  بررسی تجربی کارآیی گرمایی مبادله کن های گرمایی پوسته و لوله مارپیچ با استفاده از نانوذرات مغناطیسی اکسید آهن، مجله مهندسی مکانیک، (2)10،49-1.
[13] Khanafer, K. and Vafai K.,)2011(, A critical synthesis of thermophysical characteristics of nanofluids, Int. J. Heat Mass Transf., 54, 4410-4428.
[14] کرمانی، احسان، (1394)، مطالعه اثر بکارگیری لوله میکروفین دار داخلی بر انتقال حرارت و افت فشار نانوسیال آب اکسید آلومینیوم در مبدل بازیافت حرارتی پوسته و لوله، پایان نامه کارشناسی ارشد، دانشگاه کاشان، کاشان.
[15] Leong, K.Y., Saidur, R., Mahlia, T.M.I., and Yau, Y.H., (2012), Modeling of shell and tube heat recovery exchanger operated with nanofluid based coolants, Int. J. Heat Mass Transf., 55, 808-816.
[16] Bergman, T., L., and Lavine , A. S., (2017), Fundamentals Of Heat and Mass Transfer, 8th edition, John Wiley & Sons, Inc.
[17] Kara, Y. A., and Güraras, Ö., (2004), A computer program for designing of shell-and-tube heat exchangers. Appl. Therm. Eng., 24, 1797-1805.
[18] Huber, M. L., Lemmon, E. W., Bell, I. H., and McLinden, M. O., (2022), The NIST REFPROP Database for Highly Accurate Properties of Industrially Important Fluids, Ind. Eng. Chem. Res., 61(42), 15449–15472.