Numerical Simulation and Aerodynamic Performance Investigation of Insect-inspired Propellers

Authors

1 Aerospace Department, Faculty of New Sciences and Technologies, Tehran University, Tehran, Iran

2 Faculty of New Sciences and Technologies, Tehran University

3 Assistant Professor University of Tehran

Abstract

One of the methods that can be used in improving the aerodynamic performance of the small unmanned aerial vehicle propellers is inspiration from the wing shape of different species of animals such as birds and insects. current research investigates the aerodynamic performance of insect-inspired propellers. propeller shape effects on the aerodynamic performance parameters including thrust, torque and propeller efficiency; have been studied. In this research, the wing shape of four species of insects including Hemiptera, Orthoptera and Neuroptera was inspired. Numerical simulations were conducted using the moving reference frame method (Multiple Reference Frame) and k-ω SST turbulence model at the hover condition. simulations were done in the rotational speed range of 4000 to 8000 rpm for a propeller with a diameter of 0.24 meters. Eppler E63 airfoil is selected for all propellers. validation of numerical simulation results has been done using experimental data of the DJI Phantom 3 propeller and an acceptable agreement with the experimental data was obtained. results shows that the insect-inspired propellers have higher thrust, and at a constant force, inspired propellers have a lower rotational speed. Considering the propeller efficiency, this propeller has the best performance with 6.74% improvement compared to the DJI Phantom 3.

Keywords

Main Subjects


[1] Mohamed, N., Al-Jaroodi, J., Jawhar, I., Idries, A., & Mohammed, F. (2018). Unmanned aerial vehicles applications in future smart cities. Technological Forecasting and Social Change, 119293. https://doi.org/10.1016/j.techfore.2018.05.004
[2] Azwan Sapit, Mohamad Faiz Masjan, & Saad Kariem Shater. (2021). Aerodynamics Drone Propeller Analysis by using Computational Fluid Dynamics. J. Complex Flow, 3(2), 12–16.
[3] R Deters, R. W., Ananda Krishnan, G. K., & Selig, M. S. (2014). Reynolds Number Effects on the Performance of Small-Scale Propellers. 32nd AIAA Applied Aerodynamics Conference. https://doi.org/10.2514/6.2014-2151
[4] Ramasamy, M., Johnson, B., & Leishman, J. G. (2008). Understanding the Aerodynamic Efficiency of a Hovering Micro-Rotor. J. American Helicopter Society, 53(4), 412. https://doi.org/10.4050/jahs.53.412.
[5] Yilmaz, E., & Hu, J. (2018). CFD Study of Quadcopter Aerodynamics at Static Thrust Conditions (pp. 27–28).
[6] Hassanalian, M., Radmanesh, M., & Sedaghat, A. (2014). Increasing Flight Endurance of MAVs using Multiple Quantum Well Solar Cells. Int. J. Aeronautical and Space Sciences, 15(2), 212–217. https://doi.org/10.5139/ijass.2014.15.2.212
[7] Joachim Schömann. (2014). Hybrid-Electric Propulsion Systems for Small Unmanned Aircraft.
[8] Brandt, J., & Selig, M. (2011). Propeller Performance Data at Low Reynolds Numbers. 49th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. https://doi.org/10.2514/6.2011-1255
[9] Gomez, S., Gilkey, L. N., Kaiser, B., & Poroseva, S. V. (2014, June 16). Computational Analysis of a Tip Vortex Structure Shed from a Bio-inspired Blade. Presented at the 32nd AIAA Applied Aerodynamics Conference, Atlanta, GA. https://doi.org/10.2514/6.2014-3253
[10]  رضواندوست، مصطفی، پیرکندی، جاماسب، محمودی، مصطفی، و میرزاپور، داریوش. (1393). تحلیل عددی عملکرد استاتیکی یک ملخ نمونه و مقایسه آن با نتایج تجربی و تئوری. کنفرانس بین المللی انجمن هوا فضای ایران. SID. https://sid.ir/paper/887835/fa
 
[11] Ning, Z., & Hu, H. (2017). An Experimental Study on the Aerodynamic and Aeroacoustic Performances of a Bio-Inspired UAV Propeller. 35th AIAA Applied Aerodynamics Conference. https://doi.org/10.2514/6.2017-3747
[12] Deters, R. W., Kleinke, S., & Selig, M. S. (2017). Static Testing of Propulsion Elements for Small Multirotor Unmanned Aerial Vehicles. 35th AIAA Applied Aerodynamics Conference. https://doi.org/10.2514/6.2017-3743
[13] Hintz, C., Khanbolouki, P., Perez, A. M., Tehrani, M., & Poroseva, S. (2018). Experimental study of the effects of bio-inspired blades and 3D printing on the performance of a small propeller. 2018 Applied Aerodynamics Conference. https://doi.org/10.2514/6.2018-3645
[14] Shamsudin, S. S., & Madzni, M. Z. (2021). Aerodynamic Analysis of Quadrotor UAV Propeller Using Computational Fluid Dynamic. J. Complex Flow , 3(2), 28–32.
[15] Moslem, F., Masdari, M., Fedir, K., & Moslem, B. (2022). Experimental investigation into the aerodynamic and aeroacoustic performance of bioinspired smallscale propeller planforms. Proceedings of the Institution of Mechanical Engineers, Part G: J. Aerospace Eng., 237, 095441002210913. https://doi.org/10.1177/09544100221091322
[16] Mozafari, M., & Masdari, M. (2023). Owl Aeroacoustics: Analysis of a Silent Flight. J40, 39.3(1), 99–118. https://doi.org/10.24200/j40.2022.60494.1643
 [17] Kutty, H., & Rajendran, P. (2017). 3D CFD Simulation and Experimental Validation of Small APC Slow Flyer Propeller Blade. Aerospace, 4(1), 10. https://doi.org/10.3390/aerospace4010010
[18] DJI Team, “phantom-3-standard,” DJI. https://www.dji.com (accessed 2021).
[19] “Phantom 3 Standard - User Manual V 1.4,” Sep. 01, 2015.
[20] Ábrahám, L. (2020). A new Creoleon sp. n. (Neuroptera: Myrmeleontidae) from Socotra (Yemen). Natura Somogyiensis, 35, 37–44. https://doi.org/10.24394/natsom.2020.35.37
[21] Hectonichus, Pyrgomorphidae - Phymateus karschi. [Is licensed under CC BY-SA 3.0]. Available:https://creativecommons.org/licenses/by-sa/3.0/?ref=openverse
[22] Constant, J., & Pham, T. (2017). Review of the clavatus group of the lanternfly genus Pyrops (Hemiptera: Fulgoromorpha: Fulgoridae). European J. Taxonomy, 305, 1–26. https://doi.org/10.5852/ejt.2017.305
[23] Zhou, W., Ning, Z., Li, H., & Hu, H. (2017). An Experimental Investigation on Rotor-to-Rotor Interactions of Small UAV Propellers. 35th AIAA Applied Aerodynamics Conference. https://doi.org/10.2514/6.2017-3744
[24] Ansys® Fluent, Release 2021 R1, Help System, Ansys Fluent Theory Guide, ANSYS, Inc.
 
[25] GarofanoSoldado, A., SanchezCuevas, P. J., Heredia, G., & Ollero, A. (2022). Numericalexperimental evaluation and modelling of aerodynamic ground effect for smallscale tilted propellers at low Reynolds numbers. Aerospace Science and Technology, 126, 107625. https://doi.org/10.1016/j.ast.2022.107625
[26] Han, H., Xiang, C., Xu, B., & Yu, Y. (2019). Aerodynamic performance and analysis of a hovering micro-scale shrouded rotor in confined environment. Advances in Mechanical Engineering, 11(4), 168781401882332. https://doi.org/10.1177/1687814018823327
[27] Chevula, S., Chillamcharal, S., & Maddula, S. P. (2021). A Computational Design Analysis of UAV’s Rotor Blade in Low-Temperature Conditions for the Defence Applications. Int. J. Aerospace Eng., 2021, e8843453. https://doi.org/10.1155/2021/8843453
[28] Lopez, O. R., Escobar, J., & Andrés Pociña Pérez. (2017). Computational Study of the Wake of a Quadcopter Propeller in Hover. https://doi.org/10.2514/6.2017-3961
[29] John David Anderson. (1995). Computational Fluid Dynamics. International Marine.
[30] Bengt Andersson. (2012). Computational fluid dynamics for engineers. Cambridge ; New York: Cambridge University Press.
[31] Schetz, J. A., & Bowersox, R. D. W. (2012). Boundary layer analysis (pp. 240–241). Reston, Va. American Institute Of Aeronautics And Astronautics.
[32] Li, Y., Yonezawa, K., Xu, R., & Liu, H. (2021). A Biomimetic Rotor-configuration Design for Optimal Aerodynamic Performance in Quadrotor Drone. J. Bionic Eng., 18(4), 824–839. https://doi.org/10.1007/s42235-021-0069-0
 [33] Wilcox, D. (2008). Formulation of the kω Turbulence Model Revisited. Aiaa JAIAA J, 46, 2823–2838. https://doi.org/10.2514/1.36541
 [34] Menter, F. (1993). Zonal Two Equation k-w Turbulence Models For Aerodynamic Flows. 23rd Fluid Dynamics, Plasmadynamics, and Lasers Conference. https://doi.org/10.2514/6.1993-2906
[35] Gudmundsson, S. (2014). The Anatomy of the Propeller. In General Aviation Aircraft Design (pp. 581–659). https://doi.org/10.1016/b978-0-12-397308-5.00014-3