Numerical simulation of forced heat transfer of liquid metals in a microchannel heat sink under a magnetic field

Authors

1 Assoc. Prof., Department of Mechanical Engineering, University of Kashan, Kashan, Iran

2 Mech. Eng. Dep., Univercity of Kashan, kashan, Iran

Abstract

Increasing the heat transfer rate in various industries in order to improve the efficiency of equipment, prevent damage to parts and reduce costs is one of the essential discussions in the industry. One of the solutions to increase heat transfer is the use of active heat sink. In this research, an active heat sink with Galinsten liquid metal fluid was used and the discretization of Navier-stokes equations was done using the second order upstream finite volume method. The effect of applying the magnetic field in the Y direction (perpendicular to the flow axis) to the heat sink has caused the creation of a force against the flow direction called the Lorentz force, which has caused the M-shaped velocity distribution. According to the constant flux boundary condition, increasing the flow velocity in the vicinity of the walls has caused the surface temperature to decrease and the heat transfer to improve. The results showed that the effect of applying a uniform external magnetic field in both Y and X directions with a Hartmann number of 517 improved the Nusselt number by 38% and 13%, respectively, compared to a Hartmann number of zero. The effect of applying a magnetic field in the Y direction to the heat well with a Hartmann number of 517, 38%, Hartmann number of 258, 22% and Hartmann number of 129, 13% has improved the heat transfer.

Keywords

Main Subjects


  • Tuckerman, D. B., & Pease, R. F. W. (1981). High-performance heat sinking for VLSI. IEEE Electron dev. lett., 2(5), 126-129.‏
  • Qu, W., & Mudawar, I. (2002). Experimental and numerical study of pressure drop and heat transfer in a single-phase micro-channel heat sink. Int. J. Heat Mass Transf., 45(12), 2549-2565.‏ J. Heat Mass Transf.
  • Gunnasegaran, P., Mohammed, H. A., Shuaib, N. H., & Saidur, R. (2010). The effect of geometrical parameters on heat transfer characteristics of microchannels heat sink with different shapes. Int. Commun. Heat Mass Transf. , 37(8), 1078-1086.‏
  • Guo, Y., Zhu, C. Y., Gong, L., & Zhang, Z. B. (2023). Numerical simulation of flow boiling heat transfer in microchannel with surface roughness. Int. J. Heat Mass Transf., 204, 123830.‏
  • Sepehrnia, M., & Rahmati, A. (2018). Numerical investigating the gas slip flow in the microchannel heat sink using different materials.  Nano Micro Scale Sci., 6(Special Issue), 44-50.‏
  • Kumar, R., Singh, G., & MikielewicZ, D. (2018). A new approach for the mitigating of flow maldistribution in parallel microchannel heat sink. J. Heat Transf. , 140(7), 072401.‏
  • Li, X. Y., Wang, S. L., Wang, X. D., & Wang, T. H. (2019). Selected porous-ribs design for performance improvement in double-layered microchannel heat sinks. Int. J. Therm. Sci., 137, 616-626.‏
  • Shomali, M., & Rahmati, A. (2020). Numerical analysis of gas flows in a microchannel using the Cascaded Lattice BoltZmann Method with varying Bosanquet parameter. J. Heat Mass Transf. Res., 7(1), 25-38.‏
  • Wang, S. L., Chen, L. Y., Zhang, B. X., Yang, Y. R., & Wang, X. D. (2020). A new design of double-layered microchannel heat sinks with wavy microchannels and porous-ribs. J. Therm. Anal. Calorim., 141, 547-558.
  • Hamidi, E., Ganesan, P., Muniandy, S. V., & Hassan, M. A. (2022). Lattice BoltZmann Method simulation of flow and forced convective heat transfer on 3D micro X-ray tomography of metal foam heat sink. Int. J. Therm. Sci., 172, 107240.‏
  • KeshavarZ, M., Habibi, S., & Amini, Y. (2023). Heat transfer enhancement in a microchannel using active vibrating pieZoelectric vorteX generator. J. Solid Fluid Mech., 12(6), 191-204.‏
  • Chein, R., & Huang, G. (2005). Analysis of microchannel heat sink performance using nanofluids.  Therm. Eng., 25(17-18), 3104-3114.‏
  • DarZi, A. R., Farhadi, M., Sedighi, K., Aallahyari, S., & Delavar, M. A. (2013). Turbulent heat transfer of Al2O3–water nanofluid inside helically corrugated tubes: numerical study. Int. Commun. Heat Mass Transf., 41, 68-75.‏
  • Sohel, M. R., KhaleduZZaman, S. S., Saidur, R., Hepbasli, A., Sabri, M. F. M., & Mahbubul, I. M. (2014). An Experimental investigation of heat transfer enhancement of a minichannel heat sink using Al2O3–H2O nanofluid. Int. J. Heat Mass Transf., 74, 164-172.‏
  • Ho, C. J., Wei, L. C., & Li, Z. W. (2010). An Experimental investigation of forced convective cooling performance of a microchannel heat sink with Al2O3/water nanofluid. Appl. Therm. Eng., 30(2-3), 96-103.‏
  • Ghasemi, S. E., Ranjbar, A. A., & Hosseini, M. J. (2017). Thermal and hydrodynamic characteristics of water-based suspensions of Al2O3 nanoparticles in a novel minichannel heat sink.  Mol. Liq., 230, 550-556.‏
  • Teimouri, A., Nejati, V., Zahmatkesh, I., & Saleh, S. R. (2023). Numerical investigation of two-phase nanofluid flow in square cavity with inclined wall under different magnetic field. J. Solid Fluid Mech., 13(1), 125-136.‏
  • Kumar, R., Tiwary, B., & Singh, P. K. (2022). Thermofluidic analysis of Al2O3-water nanofluid cooled branched wavy heat sink.  Therm. Eng., 201, 117787.‏
  • Miner, A., & Ghoshal, U. (2004). Cooling of high-power-density microdevices using liquid metal coolants.  Phys. Lett., 85(3), 506-508.‏
  • Hodes, M., Zhang, R., Lam, L. S., WilcoXon, R., & Lower, N. (2013). On the potential of galinstan-based minichannel and minigap cooling. IEEE Trans. Compon. Packag. Manuf. Technol., 4(1), 46-56.‏
  • Xie, G., Chen, Z., Sunden, B., & Zhang, W. (2013). Numerical predictions of the flow and thermal performance of water-cooled single-layer and double-layer wavy microchannel heat sinks.  Heat Transf., Part A: Applications, 63(3), 201-225.‏
  • Zhang, R., Hodes, M., Lower, N., & WilcoXon, R. (2015). Water-Based Microchannel and Galinstan-Based Minichannel Cooling Beyond 1 kW/cm2 Heat FluX. , IEEE Trans. Compon., Packag. Manuf. Technol., 5(6), 762-770.‏
  • Wu, T., Wang, L., Tang, Y., Yin, C., & Li, X. (2022). Flow and heat transfer performances of liquid metal based microchannel heat sinks under high temperature conditions. Micromachines, 13(1), 95.‏
  • Wang, Z. H., & Zhou, Z. K. (2019). External natural convection heat transfer of liquid metal under the influence of the magnetic field. Int. J. Heat Mass Transf., 134, 175-184.‏
  • Shi, X., Li, S., Mu, Y., & Yin, B. (2019). Geometry parameters optimiZation for a microchannel heat sink with secondary flow channel. Int. Commun. Heat Mass Transf., 104, 89-100.‏
  • Wang, T. H., Wu, H. C., Meng, J. H., & Yan, W. M. (2020). Optimization of a double-layered microchannel heat sink with semi-porous-ribs by multi-objective genetic algorithm. Int. J. Heat Mass Transf., 149, 119217.‏
  • Hajmohammadi, M. R., GholamreZaie, S., Ahmadpour, A., & Mansoori, Z. (2020). Effects of applying uniform and non-uniform eXternal magnetic fields on the optimal design of microchannel heat sinks., J. Mech. Sci., 186, 105886.‏
  • Abadeh, A., Sardarabadi, M., Abedi, M., PourrameZan, M., Passandideh-Fard, M., & Maghrebi, M. J. (2020). EXperimental characteriZation of magnetic field effects on heat transfer coefficient and pressure drop for a ferrofluid flow in a circular tube.  Mol. Liq., 299, 112206.‏
  • Li, P., Guo, D., & Huang, X. (2020). Heat transfer enhancement in microchannel heat sinks with dual split-cylinder and its intelligent algorithm based fast optimiZation.  Therm. Eng., 171, 115060.‏‏

 

Chen, Z., Qian, P., Huang, Z., Zhang, W., & Liu, M. (2023). Study on flow and heat transfer of liquid metal in the microchannel heat sink. Int. J. Therm. Sci., 183, 107840.‏

  • Koneti, L., & Venkatasubbaiah, K. (2023). A comparative heat transfer study of water and liquid gallium in a square enclosure under natural convection. Int. J. Fluid Mech. Res., 50(3).‏
  • SheikhZadeh, G., Alanchari, A., Mehradasl, A., & Pirmohammadi, M. (2023). Numerical study of turbulent natural convection in the presence of a constant magnetic field in a square enclosure. Energy Eng. Manag. 1(2), 49-55.‏
  • Singh, R. J., & Gohil, T. B. (2023, May). Numerical investigation on the liquid metal flow and heat transfer in the multi-step enclosure in the eXistence of magnetic field. In AIP Conference Proceedings(Vol. 2584, No. 1). AIP Publishing.
  • Ullah, Z., Ahmad, H., Khan, A. A., Aldhabani, M. S., & Alsulami, S. H. (2023). Thermal conductivity effects on miXed convection flow of electrically conducting fluid along vertical magnetiZed plate embedded in porous medium with convective boundary condition.  Today Commun., 35, 105892.
  • Wang, Z. H., & Lei, T. Y. (2020). Liquid metal MHD effect and heat transfer research in a rectangular duct with micro-channels under a magnetic field. Int. J. Therm. Sci., 155, 106411.‏
  • Sarowar, M. T. (2021) Numerical analysis of a liquid metal cooled mini channel heat sink with five different ceramic substrates. Int., 47(1), 214-225
  • Hunt, J. C. R. (1965). Magnetohydrodynamic flow in rectangular ducts.  Fluid Mech., 21(4), 577-590.‏
  • Hunt, J. C. R., & Stewartson, K. (1965). Magnetohydrodynamic flow in rectangular ducts. II.  Fluid Mech., 23(3), 563-581.‏