Analysis of fire development in a passenger car considering various insulation

Authors

1 Assoc. Prof., Railway Engineering, Iran University of Science &Technology, Tehran, Iran

2 MSc graduate, Railway Engineering, Iran University of Science &Technology, Tehran, Iran

Abstract

The This research was defined with the aim of analyzing combustion and development of fire in a passenger car with Pyrosim software, and it is intended to be a complete study on the optimization of the interior design material structure of the passenger car against fire, which will reduce the amount of casualties in the event of an accident. This work was done by simulating fire development by Pyrosim software and using experimental data. A reference model that has been subjected to fire testing in real scale was modeled in Pyrosim software. After validating the existing model and then changing the insulating materials used in the wagon body and seats, new insulations of compressed polystyrene, expanded polystyrene , stone wool and glass wool were used.The results showed that glass wool and stone wool insulation had a good performance against fire, that is, they showed a lower heat emission rate and recorded a lower development rate, and the internal temperature of the wagon and the amount of smoke reached the critical range over a longer period of time. Foams had a very poor performance and in addition to increasing the rate of heat release and internal temperature, they had a higher amount of soot production. It was concluded that from the point of view of optimal control of fire development, it is better to use glass wool or stone wool insulation in the car body and to use phenolic foam insulation in the interior design of the seat for passenger comfort.

Keywords

Main Subjects


[1] بلبل امیری، نجمه و نصیرزاده، فرناد، 1388، کاربرد رویکرد FMEA  فازی برای ارزیابی ریسک خرابی‌های مربوط به سیستم سیگنالینگ، علائم، کنترل و مخابرات مترو، دومین کنفرانس بین‌المللی پیشرفت­های اخیر در مهندسی راه­آهن
[2] فکور، ارغوان، 1395، آنالیز ریسک حریق ناشی از     سوخت‌گیری قطار مسافری حین جابجایی مسافر مطالعه موردی: ایستگاه راه­آهن سیرجان، کنفرانس ملی محافظت ساختمان­ها و سیستم­های حمل و نقل در برابر آتش، تهران
[3] اقتصاد آنلاین (1395). حادثه قطار هفت‌خوان. https://www.eghtesadonline.com
[4] Peacock, R. D., & Braun, E. (1984). Fire tests of Amtrak passenger rail vehicle interiors (No. NBS/TN-1193).
[5] White, N., V. Dowling, and J. Barnett, (2005) Full-scale fire experiment on a typical passenger train. Fire Safety Sci.
[6] Ingason, H., Kumm, M., Nilsson, D., Lönnermark, A., Claesson, A., Li, Y. Z., ... & Palm, A. (2012). The METRO project (Vol. 2012, No. 8). Mälardalen University Press
[7] Lee,D.H.,Park,W.H.,Hwang,J.,& Hadjisophocleous, G. (2016). Full-scale fire test of an intercity train car. Fire tech., 52(5), 1559-1574.
[8] Lönnermark, A., et al.( 2017), Fire development in a 1/3 train carriage mock-up. Fire Safety J,. 91: p. 432-440.
[9] Shi, C., Zhong, M., Chen, C., Jiao, W., Li, J., Zhang, Y., ... & He, L. (2020). Metro train carriage combustion behaviors–Full-scale experiment study. Tunnelling and Underground Space Tech., 104, 103544.
[10]  Dowling, V. P., White, N., Webb, A. K., & Barnett, J. R. (2007). When a passenger train burns, how big is the fire. Fire Sci. & Tech. Lab., 17-26.
[11] Dowling, V. P., & White, N. (2004, March). Fire sizes in railway passenger saloons. In 6th Asia-Oceania Symposium on Fire Science & Technology, Daegu, Korea (pp. 602-611).
[12] Lee, D., et al.,( 2013) Estimations of heat release rate curve of railcar fire. J. Mech. Sci & Tech, 27(6): p. 1665-1670.
[13] Chen, J. M., Yao, X. L., Yan, G., & Guo, X. H. (2014). Comparative study on heat release rate of high-speed passenger train compartments. Procedia eng, 71, 107-113.
[14] MO, S. J., Li, Z. R., Liang, D., Li, J. X., & Zhou, N. J. (2013). Analysis of smoke hazard in train compartment fire accidents base on FDS. Procedia Eng., 52, 284-289.
[15] Chow, W. K., Lam, K. C., Fong, N. K., Li, S. S., & Gao, Y. (2011). Numerical simulations for a typical train fire in china. Mod. & Sim. in Eng.
[16] Bi, H., Zhou, Y., Wang, H., Gou, Q., & Liu, X. (2020). Characteristics of fire in high-speed train carriages. J. fire sci., 38(1), 75-95.
[17] عصاری, محمدرضا, زاده مبارک، گلشن، پرور، محسن. (1400). تحلیل آتش سوزی قطار با روش شبیه سازی دینامیکی آتش. مهندسی مکانیک30(4), 15-24
[18] Peacock, R. D., & Braun, E. (1999). Fire safety of passenger trains: phase I: material evaluation (cone calorimeter) (No. DOT-VNTSC-FRA-98-26). United States. Federal Railroad Administration.
 [19] شمسی زاده، فریبا و ابوعلی، امید، 1386، مدل‌سازی آتش‌سوزی در تونل‌ها، دومین کنفرانس احتراق ایران، مشهد
[20] Chiam, B. H. (2005). Numerical simulation of a metro train fire.
[21] Jannot, Y., Felix, V., & Degiovanni, A. (2010). A centered hot plate method for measurement of thermal properties of thin insulating materials. Measurement Sci. & tech., 21(3), 035106.
[22] Doley, P. M., Yuen, A. C. Y., Kabir, I., Liu, L., Wang, C., Chen, T. B. Y., & Yeoh, G. H. (2022). Thermal Hazard and Smoke Toxicity Assessment of Building Polymers Incorporating TGA and FTIR—Integrated Cone Calorimeter Arrangement. Fire, 5(5), 139.
[23] Lee, D. H., Park, W. H., Jung, W. S., & Hwang, J. H. (2010). Fire test of old type interiors of subway vehicle in ISO 9705 room. J of the Korean Soc. for Railway, 13(5), 481-487.
[24] McGrattan, K., Hostikka, S., McDermott, R., Floyd, J., Weinschenk, C., & Overholt, K. (2013). Fire dynamics simulator technical reference guide volume 1: mathematical model. NIST special publication, 1018(1), 175.
[25] An, W., Jiang, L., Sun, J., & Liew, K. M. (2015). Correlation analysis of sample thickness, heat flux, and cone calorimetry test data of polystyrene foam. J Thermal Analysis and Calorimetry, 119(1), 229-238.
[26] Cernosa, T. (2020). INTERMEDIATE-SCALE TESTS AND CONE CALORIMETER TESTS-FIRE BEHAVIOUR OF SELECTED FACADE MATERIALS. LUTVDG/TVBB
 
[27] McKenna, S. T., Jones, N., Peck, G., Dickens, K., Pawelec, W., Oradei, S., ... & Hull, T. R. (2019). Fire behaviour of modern façade materials–Understanding the Grenfell Tower fire. J. hazardous materials, 368, 115-123.