Numerical Simulation of Magneto-Hydrodynamics Effect on Supersonic Flow of A Projectile

Authors

1 PhD student / Department of Mechanical Engineering, Engineering Faculty, Ferdowsi University of Mashhad, Iran

2 PhD, Aerodynamics Engineering, Tehran, Iran.

3 Prof., Department of Mechanical Engineering, Ferdowsi University, Mashhad, Iran.

4 Assistant professor of Aerospace engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Iran

10.22044/jsfm.2023.9558.3156

Abstract

Plasma actuator is an active flow control tool, which has been evaluated by the aerodynamic researchers since last decade due to its simple structure, light weight, low energy consumption, and high time response. In this paper effects of plasma on aerodynamic behavior of a rocket at different flight conditions is numerically investigated. Results of plasma effects or variation of attack angle, Mach number, and flight altitude on the drag and lift coefficients are evaluated. Applying plasma increases the vertical velocity under the rocket canards which leads to higher pressures and therefore higher pressure difference and forces are applied on the rocket canards which improves their functionality. Drag and lift coefficients are both increased due to the plasma, but the aerodynamic efficiency (lift to drag ratio) is increased by increasing potential difference. Results shows that plasma effect is reduced with increasing of angle of attack and increased with the flight altitude and aerodynamic efficiency is changed between %3 and %60 by applying plasma.

Keywords

Main Subjects


[1]  B. Jayaraman, Y.-C. Cho and W. Shyy, (2008) Modeling of dielectric barrier discharge plasma actuator, J APPL PHYS, 103(5): 053304.
[2]  J. Huang, T. C. Corke and F. O. Thomas, (2006) Unsteady plasma actuators for separation control of low-pressure turbine blades, AIAA J, 44(7): 1477-1487.
[3]  D. P. Rizzetta and M. R. Visbal, (2007) Numerical investigation of plasma-based flow control for transitional highly-loaded low-pressure turbine, AIAA J, 45(10): 2554-2564.
[4]  M. P. Patel, Z. H. Sowle, T. C. Corke and C. He, (2007) Autonomous sensing and control of wing stall using a smart plasma slat, J AIRCRAFT, 44(2): 516-527.
[5]  R. Sosa and G. Artana, (2006) Steady control of laminar separation over airfoils with plasma sheet actuators, J ELECTROSTAT, 64(7-9): 604-610.
[6]  D. Orlov, T. Apker, C. He, H. Othman and T. Corke, (2007) Modeling and experiment of leading edge separation control using SDBD plasma actuators, 45th AIAA aerospace sciences meeting and exhibit.
[7]  M. L. Post and T. C. Corke, (2004) Separation control on high angle of attack airfoil using plasma actuators, AIAA J, 42(11): 2177-2184.
[8]  T. McLaughlin, M. Munska, J. Vaeth, T. Dauwalter, J. Goode and S. Siegel, (2004) Plasma-based actuators for cylinder wake vortex control, 2nd AIAA flow Control Conference, 2129.
[9]  R. Nelson, T. Corke, H. Othman, M. Patel, S. Vasudevan and T. Ng, (2008) A smart wind turbine blade using distributed plasma actuators for improved performance, 46th AIAA Aerospace Sciences Meeting and Exhibit, 1312.
[10]T. Matsunuma and T. Segawa, (2017) Effects of Tip Clearance Size on Active Control of Turbine Tip Clearance Flow Using Ring-type DBD Plasma Actuators, 17th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery (ISROMAC2017).
[11] D. Van Ness, T. Corke and S. Morris, (2006) Turbine tip clearance flow control using plasma actuators, 44th AIAA Aerospace Sciences Meeting and Exhibit, 21.
[12]  M. Sato, K. Asada, T. Nonomura, H. Aono, A. Yakeno and K. Fujii, (2019) Mechanisms for turbulent separation control using plasma actuator at Reynolds number of 1.6× 106, PHYS Fluids, 31(9).
[13] X. Zhang, L. Huaxing, Y. Huang, T. Kun and W. Wanbo, (2019) Leading-edge flow separation control over an airfoil using a symmetrical dielectric barrier discharge plasma actuator, CHINESE J AERONAUT, 32(5): 1190-1203.
 [14] J.-G. Zheng, (2021) Flow separation control over an airfoil using continuous alternating current plasma actuator, CHINESE PHYS B, 30(3): 1-10.
]15[ س. میرزایی و م. پسندیده فرد (2015) ، شبیه سازی عددی چند ساختار از عملگرهای پلاسما و ارزیابی عملکرد آنها بر روی ایرفویل‌های NACA0012 و NACA0015, نشریه علمی پژوهشی مهندسی هوانوردی، 16(1):75-94.
[16] E. Moreau, (2007) Airflow control by non-thermal plasma actuators, J. phys. D: applied physics, 40(3): 605.
[17] T. C. Corke, M. L. Post and D. M. Orlov, (2009) Single dielectric barrier discharge plasma enhanced aerodynamics: physics, modeling and applications, EXP FLUIDS, 46(1): 1-26.
[18] A. Mahboubidoust and A. Ramiar, (2017) Investigation of DBD plasma actuator effect on the aerodynamic and thermodynamic performance of high solidity Wells turbine, RENEW ENERG, 112: 347-364.
[19] A. S. Taleghani, A. Shadaram, M. Mirzaei and S. Abdolahipour, (2018) Parametric study of a plasma actuator at unsteady actuation by measurements of the induced flow velocity for flow control, J BRAZ SOC MECH SCI, 40(4): 1-13.
[20] A. S. Taleghani, A. Shadaram and M. Mirzaei, (2012) Effects of duty cycles of the plasma actuators on improvement of pressure distribution above a NLF0414 airfoil, IEEE T PLASMA SCI, 40(5): 1434-1440.
 
]21[ ا. صدیق و ر. ابراهیمی (2017), شبیه سازی عددی یک بعدی عملکرد رانشگر پالس پلاسمایی با پیشران جامد, مکانیک سازه‌ها و شاره‌ها، 7(1):161-173.
]22[ م. آهنگر, ر. ابراهیمی و ش. مهرزاد (2014), شبیه‌سازی عددی جریان پلاسمای غیرتعادلی در یک رانشگر پلاسمایی مغناطیسی, مکانیک سازه‌ها و شاره‌ها، 4(2):89-101.
[23] P. Gnemmi, R. Charon, J.-P. Dupéroux and A. George, (2008) Feasibility study for steering a supersonic projectile by a plasma actuator, AIAA J, 46(6): 1308-1317.
[24] P. Gnemmi, C. Rey, A. Eichhorn, M. Bastide and J.-L. Striby, (2013) Pressure, temperature and free-flight projectile-displacement measurements during a plasma discharge generated on a supersonic projectile, Int J Aero, 3(1-2-3): 84-104.
[25] P. Gnemmi and C. Rey, (2009) Plasma actuation for the control of a supersonic projectile, J SPACECRAFT ROCKETS, 46(5): 989-998.
[26] A. Akgül, H. Y. Akargün, B. Atak, A. E. Çetiner and O. Göker, (2012) Numerical investigation of NASA tandem control missile and experimental comparison, Sci. Tech. Rev, 62(1): 3-9.
[27] T. West and S. Hosder, (2012) Numerical investigation of plasma actuator configurations for flow separation control at multiple angles of attack, 6th AIAA flow control conference.