Investigating factors affecting electrode wear rate in electrical discharge machining of AZ91 magnesium alloy metal matrix composite reinforced with silicon carbide microparticles

Authors

1 MSc, Department of Mechanical Engineering, arak university of technology, arak, Iran

2 Assist. Prof., Department of Mechanical Engineering, arak university of technology, arak, Iran

3 Ph.D. Student, Department of Mechanical Engineering, arak university, arak, Iran

4 Assoc. Prof., Department of Mechanical Engineering, arak university of technology, arak, Iran

Abstract

Metal matrix composites have attracted a lot of attention for application in the aerospace, defense, and automotive industries. Machining these materials with traditional machining methods is very difficult due to the presence of abrasive particles. Electrical Discharge Machining (EDM) is one of the most widely used advanced machining methods and seems to be a good method for machining metal matrix composites. Tool wear occurs during the process and cannot be reduced to zero, but it can be reduced as much as possible. In this research, the effect of discharge peak current, pulse on time, and pulse off time on the workpiece made of AZ91 magnesium alloy, reinforced with 5% of powdered silicon carbide particles has been investigated. The effect of these parameters on the wear rate of copper electrode is studied. The tests of this process have been modeled using the response surface methodology. 17 experiments have been done to reach the results. Discharge peak current, pulse on time, the interaction effect of discharge peak current and pulse on time, and the interaction effect of pulse off time and discharge peak current are effective factors on electrode wear rate. The lowest electrode wear rate is on the 300 microseconds pulse on time, 11.69 amp discharge peak current, and pulse off time of 20 microseconds.

Keywords

Main Subjects


[1] Gore, A. S., & Patil, N. G. (2018). Wire electro discharge machining of metal matrix composites: A review. Procedia Manuf., 20, 41-52.
[2] Velmurugan, C., Subramanian, R., Thirugnanam, S., & Ananadavel, B. (2011). Experimental investigations on machining characteristics of Al 6061 hybrid metal matrix composites processed by electrical discharge machining. Inter. J. Eng. Sci. Technol. 3(8), 87-101.
[3]  Z. Zhong and N. P. Hung (2002) "Grinding of alumina/aluminum composites," J. Mater. Process. Technol. vol. 123, no. 1, pp. 13-17.
[4] A. Srivastava, Sunil Kumar Yadav and D.K. Singh (2020) Modeling and Optimization of Electric Discharge Machining Process Parameters in machining of Al 6061/SiCp Metal Matrix Composite, Materials Today: Proceedings, https://doi.org/10.1016/j.matpr.11.235
]5[مسعودی, بهنام, & دانشمند. (2017). ﺑﺮرﺳﯽ تأثیر ﭘﺎراﻣﺘﺮﻫﺎی ماشین‌کاری تخلیه‌الکتریکی، بر روی ماده مرکب پایه آلومینیوم 2024 با استفاده از تحلیل مقدار کل نرمال شده پارامترها (TNQL) و نسبت سیگنال به نویز (S/N). فرآیندهای نوین در مهندسی مواد, 11(1), 91-110.
[6] Hourmand, M., Farahany, S., Sarhan, A. A., & Noordin, M. Y. (2015). Investigating the electrical discharge machining (EDM) parameter effects on Al-Mg 2 Si metal matrix composite (MMC) for high material removal rate (MRR) and less EWR–RSM approach. Int. J. Adv. Manuf. Technol. 77, 831-838.
]7[حاج حسینی, مختاریان, رحیمی, مسعودی, & بهنام. (2022). بررسی و بهینه‌سازی تأثیر پارامترهای ورودی بر نرخ براده برداری، نرخ سایش ابزار و زبری سطح در ماشین‌کاری تخلیه الکتریکی نانو کامپوزیت A356 تقویت‌شده با آلومینا. فرآیندهای نوین در مهندسی مواد, 16(3), 1-12.
[8] Lakshmanan, P., Kumanan, G., Arunkumar, L., & Amith, S. C. (2021). Experimental investigations of material removal rate on Mg/SiCp-flyash hybrid metal matrix composites by electrical discharge machining. Mater. Today: Proceedings, 46, 986-990.
[9]  Singh, B., Kumar, J., & Kumar, S. (2016). Investigation of the tool wear rate in tungsten powder-mixed electric discharge machining of AA6061/10% SiCp composite. Mater. Manuf. Process. 31(4), 456-466.
[10] Muniamuthu, S., & Rathinasuriyan, C. (2023). Effect of dielectric medium on electro-discharge machining of aluminium metal matrix composites. Mater. Today: Proceedings.
[11] Vahdati, M. (2020). 'Statistical analysis and optimization of parameters affecting the hardness of butt joint cross-section of Al7075 produced by FSW and SFSW using RSM and desirability approach', J. Fluid Mech. 10(4), pp. 165-180. doi: 10.22044/jsfm.2020.9476.3136
[12] Ponappa, K., Aravindan, S., Rao, P. V., Ramkumar, J., & Gupta, M. (2010). The effect of process parameters on machining of magnesium nano alumina composites through EDM. Int. J. Adv. Manuf. Technol. 46, 1035-1042.
[13] Mostafapor, Amir, and Hossein Vahedi (2019) "Wire electrical discharge machining of AZ91 magnesium alloy; investigation of effect of process input parameters on performance characteristics." Mater. Res. Express. 1.1: 015005. https://doi.org/10.1088/2631-8695/ab26c8
[14] Vahdati, M., Moradi, M. (2019). 'Statistical Analysis of Parameters Affecting the Mechanical Properties of Surface Composite Al7075/Al2O3 Produced by Friction Stir Processing Using Response Surface Methodology', J. Fluid Mech. 9(3), pp. 81-94. doi: 10.22044/jsfm.2019.8826.2997
[15] Douglas C. Montgomery (2011) Design and analysis of experiments, 7th Edittion, pp. 457-460, New York: John Wiley and Son.
[16] Hsieh CS, Zhu H, Wei TY, Chung ZJ, Yang WD, Ling YH (2008) Applying the experimental statistical method to deal the preparatory conditions of nanometric-sized TiO2 powders from a two-emulsion process, J. Eur. Ceram. Soc. Vol. 28, pp. 1177–1183.
[17] Hou TH, Su CH, Liu WL (2007) Parameters optimization of a nano-particle wet milling process using the taguchi method response surface method and geneticalgorithm, journal of Powder Technol, Vol. 173, pp. 153-162.
[18] A. Nekahi, K. Dehghani (2010) Modeling the thermo mechanical effects on baking behavior of low carbon steels using response surface methodology, J. Mater. Sci. Vol. 31, pp. 3845–3851.
[19] فرید ایلچی, آزادی مقدم, مسعود, جمالی, & کلاهان. (2015, September). مقایسه عملکرد الگوریتم های PSO و SA در بهینه سازی پارامترهای تنظیمی فرآیند ماشینکاری اسپارک فولاد ابزار AISI2312. In کنفرانس ملی مکانیک–مواد و فناوری های پیشرفته.