Experimental and numerical investigations of effects of section geometry and metallic foam filler on deformation and energy absorption characteristics of thin-walled tubes

Authors

Bu-Ali Sina University

Abstract

In this research, effects of section geometry and metallic foam filler on mechanical behavior of thin-walled tubes under axial quasi-static loads are studied both experimentally and numerically. Three types of Al-1200 thin-walled geometries, circular, square and hexagonal in the forms of hollow and foam-filled tubes are subjected to quasi-static loads and their energy absorption characteristics including maximum load, mean crushing load, absorbed energy and deformation modes are studied and compared. Instron 8305 model machine is used to axial quasi-static loading of the samples. Results of the research show that circular section has the greatest values of mean crushing load and absorbed energy; metallic foam filler increases the mean crushing load and energy absorption capacity; foam-filling does not affect the number of folds in general and finally, absorbed energy for foam-filled tube is larger than sum of energies absorbed by the tube and foam when are loaded separately. Furthermore, numerical results are in good agreement with the experimental data.

Keywords

Main Subjects


[1] شاکری م، درویزه ا (1379) مکانیک ضربه. انتشارات دانشگاه گیلان.
[2] Lee S, Park C, Ramesh NS (2007) Polymeric foams; science and technology. Taylor & Francis.
[3] Ashby MF, Evans AG, Fleck NA, Gibson LJ, Hutchinson JW, Wadley HNG (2000) Metal foams: a design guide.Butterworth & Heinemann.
[4] Ashida K (2007) Polyurethane and related foams. Taylor & Francis.
[5] دیواندری م، وحیدگلپایگانی ع ر، شاهوردی ح ر (1385) فوم­های فلزی. انتشارات دانشگاه علم و صنعت ایران.
[6] Aktay L, Toksoy AK, Guden M (2006) Quasi-static axial crushing ofextruded polystyrene foam- filled thin-walled aluminum tubes: Experimental and numerical analysis. Materials and Design 27: 556–565.
[7] میرمحمدصادقی س ا، حسینی­پور س ج، بخشی م، گرجی ع ا (1387) مقایسه­ لهیدگی محوری لوله­های جدارنازک شیاردار به کمک آزمایشات تجربی وشبیه­سازی اجزاء محدود. چهارمین کنفرانس شکل­دهی فلزات ومواد ایران، دانشگاه صنعتی شریف،١٣و١٤آذرماه 1387.
[8] محمدی­پور ر، واحدی خ، امام س م ر (1389) مطالعه پارامتریک مقاطع جدارنازک مربعی در جذب انرژی ناشی از بارگذاری مایل. مجله علمی – پژوهشی مهندسی مکانیک مجلسی (3)3: 46–35.
[9] HanssenAG, Langseth M, Hopperstad OS (2000) Static and dynamic crushing of circular aluminium extrusions with aluminium foam filler. International Journal of Impact Engineering 24: 475–507.
[10] Chun-ji Z, Yi F, Xue-bin Z (2010) Mechanical properties and energy absorption properties of aluminum foam-filled square tubes. Trans Nonferrous Met Soc China 20: 1380–1386.
[11] Hou Sh, Li Q, Long Sh, Yang X, Li W (2009) Crashworthiness design for foam filled thin-wall structures. Materials and Design 30: 2024–2032.
[12] Marzbanrad J, Mehdikhanlo M, Saeedipour A (2009) An energy absorption comparison of square, circular, and elliptic steel and aluminum tubes under impact loading. Turkish Journal of Engineering & Environmental Sciences 33: 159–166.
[13] Salehghaffari S, Tajdari M, Panahi M, Mokhtarnezhad F (2010) Attempts to improve energy absorption characteristics of circular metal tubes subjected to axial loading. Thin-Walled Structures 48: 379–390.
[14] Guillowa SR, Lua G, Grzebieta RH (2001) Quasi-static axial compression of thin-walled circular aluminium tubes. International Journal of Mechanical Sciences 43: 2103–2123.
[15] Alavi Nia A, Haddad Hamedani J (2010) Comparative analysis of energy absorption and deformations of thin walled tubes with various section geometries. Thin-Walled Struct 48: 946–954.
[16] Alavi Nia A, Badnava H, Fallah Nejad Kh (2011) An experimental investigation on crack effect on the mechanical behavior and energy absorption of thin-walled tubes. Materials and Design 32: 3594–3607.
[17] Alavi Nia A, Fallah Nejad Kh, Badnava H, Farhoudi HR (2012) Effects of buckling initiators on mechanical behavior of thin-walled square tubes subjected to oblique loading. Thin-Walled Struct 59: 87–96.