Thickness optimization of the airplane wing box components by the design of experiments method

Authors

1 Faculty of Mechanics, Malek Ashtar University of Technology, Isfahan, Iran

2 Faculty of Mechanics,, Malek Ashtar University of Technology, Isfahan, Iran

3 Iran Aircraft Manufacturing .Ind. Co., Isfahan, Iran

Abstract

Structure optimization in aerospace industries is of particular importance due to the need for light structures to reduce costs and increase flight performance. The main components of an airplane wing consist of spars, ribs and skin. At first, in this research a wing structure with two I-shaped spars, 6 ribs and a shell with specific geometric characteristics is modeled. By choosing aluminum alloy as the material of the structure and using the finite element method, the wing structure has been subjected to static loading and the maximum amount of stress and displacement of the wing box area has been obtained. Then, according to the results of the analysis and the optimization capability, the wing structure has been divided into three parts in order to optimize the thickness of the components along the length of the wing. By defining the thickness of the wing box components in all three parts as factors and stress and weight as the answers to the optimization problem through the method of designing experiments, which in this problem is the static analysis of the structure, the thickness of the components of the wing box area according to the goal of the lowest weight and the highest stress Optimization is allowed. The obtained results indicate that after the optimization, the weight of the wing box has decreased by 46.5%.

Keywords


[[1]] Grihon S, Mahe M (1999) Structhreal and multidisciplinary optimization applied to Aircraft desine. WCSMO-3.  Buffalo, NY, USA.
[2] Balabanov V, Garcelon JH (1999) Integrating visuaidoc and genesis for multidisciplinary optimization of a transport aircraft wing. WCSMO-3.  Buffalo, NY, USA.
[3] Krog L, Tucker A, Kemp M, Boyd R (2004) Stress analysis and weight optimization of a wing box structure subjected to flight loads. IJES, 3: .33-40.
[4] Guo S, Morishima R, Zhang X, Mills A (2009) Cutout shape and reinforcement design for composite C-section beams under shear load. Composite Structures, 88: 179-187.
[5] Ainswort J (2010) Airframe wingbox preliminary design and weight prediction. Collier Research Corporation, Published By The Society Of Allied Weight Engineers (SAWE) With  Permission.
[6] Immanuvel D, Arulselvan K, Maniiarasan P, Senthilkumar S (2014) Stress analysis and weight optimization of a wing box structure subjected to flight loads. IJES, 3:33-40.
[7]  Ferroni Soares L (2015) Structural analysis of a wing box. IRJET, 5,:23-31.
[8] Pujari C, Patil SF (2016) Stress, fatigue analysis and weight optimization of wing box with splice joint of a transport aircraft. IJERA, 3(6).
[9] سیف م (1384)، آنالیز، طراحی و بهینه‌سازی ابعادی اجزای بال هواپیما، پایان نامه مقطع کارشناسی ارشد مهندسی مکانیک (طراحی کاربردی)، دانشکده فنی و مهندسی، دانشگاه تربیت مدرس.
[10] بهشت‌آیین ح (1392)، مدل‌سازی و تحلیل سازه‌ای بال هواپیمای تجاری، پایان نامه مقطع کارشناسی ارشد مهندسی مکانیک (طراحی کاربردی)، دانشکده مهندسی مکانیک، دانشگاه شیراز.
[11] ضامنی ا، فاضل زاده حقیقی ا (1393)، مدلسازی و تحلیل قابلیت اعتماد سازه بال هواپیما، پایان نامه مقطع کارشناسی ارشد مهندسی مکانیک (طراحی کاربردی)، دانشکده مهندسی مکانیک، دانشگاه شیراز.
 
[12] سعادتی س، شهرآبادی م (1395)، ﻃﺮاﺣﻲ و ﺗﺤﻠﻴﻞ ﺑﺎل آﻟﻮﻣﻴﻨﻴﻮﻣﻲ ﻫﻮاﭘﻴﻤﺎ و ﺑﻬﻴﻨﻪ‌ﺳﺎزی آن ﺑﺎ اﺳﺘﻔﺎده از ﻛﺎﻣﭙﻮزﻳﺖ‌ﻫﺎ، دومین همایش یافته‌های نوین در هوافضا، مکانیک و علوم وابسته، دانشگاه تهران.
 [13] اسماعیلیان م (1399)، تحلیل تجربی شکل‌دهی افزایشی ورقه‌ی چندلایه فلز-پلیمر، پایان نامه مقطع دکترای مهندسی مکانیک (ساخت و تولید)، دانشکده مهندسی مکانیک، دانشگاه بیرجند.
[14] خوشدست ح (1398)، طراحی و تحلیل آزمایش‌ها با رویکرد کاربردی، گروه فرآوری مواد معدنی، بخش مهندسی معدن، مجتمع آموزش عالی زرند.