Numerical study of the effect of phase change materials containing multi-walled carbon nanotubes on improving the heat sink performance of electrical equipment

Authors

1 Ph.D. Student, Department of Mechanical Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran

2 Associate Professor, Department of Mechanical Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran

3 Assistant Professor, Department of Mechanical Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran

Abstract

Heat sinks have always played a crucial role in cooling electrical equipment. In this research, in a new approach, paraffin is used as a phase change material according to the suitable phase change temperature range with multi-wall carbon tube nanoparticles homogeneously in a heat sink. AnasysFluent software with finite volume method and PISO algorithm was used to model and solve the governing equations. The melting process of the PCM is numerically investigated in a three-dimensional space by applying three heat fluxes of 10,000, 20,000, and 30,000 watts per square meter, using the enthalpy-porosity method. According to the obtained results during the phase-change process, the addition of nanoparticles with volumetric percentages of 4, 6, and 8% leads to better performance in reducing the phase-change temperature. After the completion of the phase change process, increasing the volume percentage of nanoparticles does not always have a positive effect, and among the proposed options, nanoparticles with a volume fraction of 4% showed the best performance.This improvement is due to the increased conductive heat transfer in the PCM, resulting from reduced viscosity. Overall, adding 8% nanoparticles increases the total melting time by 15% compared to the pure PCM.

Keywords


[1]. Ling, Z., Zhang, Z., Shi, G., Fang, X., Wang, L., Gao, X., ... & Liu, X. (2014). Review on thermal management systems using phase change materials for electronic components, Li-ion batteries and photovoltaic modules. Renewable Sustainable Energy Rev, 31, 427-438.
[2]. Kardam, A., Narayanan, S. S., Bhardwaj, N., Madhwal, D., Shukla, P., Verma, A., & Jain, V. K. (2015). Ultrafast thermal charging of inorganic nano-phase change material composites for solar thermal energy storage. RSC Adv, 5(70), 56541-56548.
[3]. Elarem, R., Mellouli, S., Abhilash, E., & Jemni, A. (2017). Performance analysis of a household refrigerator integrating a PCM heat exchanger. Appl. Therm. Eng, 125, 1320-1333.
[4]. Khanna, S., Reddy, K. S., & Mallick, T. K. (2018). Optimization of solar photovoltaic system integrated with phase change material. Sol Energy, 163, 591-599.
[5]. Desai, A., Singh, V. K., & Bhavsar, R. R. (2017). Numerical investigation of pcm based thermal control module for space applications. (IHMTC-2017). Begel House Inc.
[6] Chu, R. C., & Simons, R. E. (1993). Recent development of computer cooling technology. In Transport Phenomena in Thermal Engineering. Volume 2. Begell House.
[7] Tharwan, M. Y., & Hadidi, H. M. (2022). Experimental investigation on the thermal performance of a heat sink filled with PCM. Alex. Eng. J, 61(9), 7045-7054.
[8]. Huang, P., Wei, G., Cui, L., Xu, C., & Du, X. (2022). Experimental and numerical optimization of cascaded PCM heat sink by using low melting point alloys. Energy Convers. Manag, 269, 116149.
]9[ عیسی پور درزی, م., حسینی کهساری, س. م. ج., رنجبر, ع. ا., و پهم لی, ی. (2016). اثر افزایش تعداد و چیدمان لوله‏های سیال گرم بر رفتار ذوب ماده تغییر فاز دهنده در مبدل حرارتی سه لوله‏ای، مکانیک سازه‌ها و شاره‌ها. 6(4), 249-262.
[10]. Patel, A., & Singh, V. K. (2022). Numerical investigation of a novel phase change material based heat sink with double sided spiral fins. ICHMT, 138, 106342.
[11] Akhilesh, R., Narasimhan, A., & Balaji, C. (2005). Method to improve geometry for heat transfer enhancement in PCM composite heat sinks. ICHMT, 48(13), 2759-2770.
[12] Wang, Y. H., & Yang, Y. T. (2011). Three-dimensional transient cooling simulations of a portable electronic device using PCM (phase change materials) in multi-fin heat sink. NRG, 36(8), 5214-5224.
[13]. Hosseinizadeh, S. F., Tan, F. L., & Moosania, S. M. (2011). Experimental and numerical studies on performance of PCM-based heat sink with different configurations of internal fins. Appl. Therm. Eng, 31(17-18), 3827-3838.
[14] Sheikholeslami, M., Nimafar, M., & Ganji, D. D. (2017). Analytical approach for the effect of melting heat transfer on nanofluid heat transfer. EPJ Plus, 132(9), 1-12.
[15] Kumar, P. M., Saminathan, R., Sumayli, A., Mittal, M., Abishek, A. S., Kumaar, A. A., ... & Rinawa, M. L. (2022). Experimental analysis of a heat sink for electronic chipset cooling using a nano improved PCM (NIPCM). Mater Today: Proceedings, 56, 1527-1531.
[16]. Jalil, J. M., Mahdi, H. S., & Allawy, A. S. (2022). Cooling performance investigation of PCM integrated into heat sink with nano particles addition. J. Energy Storage, 55, 105466.
[17] Raj, C. R., Suresh, S., Vasudevan, S., Chandrasekar, M., Singh, V. K., & Bhavsar, R. R. (2020). Thermal performance of nano-enriched form-stable PCM implanted in a pin finned wall-less heat sink for thermal management Energy Convers. Manag, 226, 113466.
[18] Ho, C. J., Guo, Y. W., Yang, T. F., Rashidi, S., & Yan, W. M. (2020). Numerical study on forced convection of water-based suspensions of nanoencapsulated PCM particles/Al2O3 nanoparticles in a mini-channel heat sink. ICHMT, 157, 119965.
[19] Arshad, A., Jabbal, M., Sardari, P. T., Bashir, M. A., Faraji, H., & Yan, Y. (2020). Transient simulation of finned heat sinks embedded with PCM for electronics cooling. TSEP, 18, 100520.
[20] Farahani, S. D., Farahani, A. D., & Hajian, E. (2021). Effect of PCM and porous media/nanofluid on the thermal efficiency of microchannel heat sinks. ICHMT, 127, 105546.
[21] Wang, S., Xing, Y., Hao, Z., Yin, J., Hou, X., & Wang, Z. (2021). Experimental study on the thermal performance of PCMs based heat sink using higher alcohol/graphite foam. Appl. Therm. Eng, 198, 117452.
[22] Sebti, S. S., Mastiani, M., Mirzaei, H., Dadvand, A., Kashani, S., & Hosseini, S. A. (2013). Numerical study of the melting of nano-enhanced phase change material in a square cavity. J. Zhejiang Univ. Sci, A, 14(5), 307-316.
[23] Ebrahimi, A., & Dadvand, A. (2015). Simulation of melting of a nano-enhanced phase change material (NePCM) in a square cavity with two heat source–sink pairs. Alex. Eng. J, 54(4), 1003-1017.
[24]. Arshad, A., Jabbal, M., Faraji, H., Talebizadehsardari, P., Bashir, M. A., & Yan, Y. (2022). Thermal performance of a phase change material-based heat sink in presence of nanoparticles and metal-foam to enhance cooling performance of electronics. J. Energy Storage, 48, 103882.
[25]. ul Hasnain, F., Irfan, M., Khan, M. M., Khan, L. A., & Ahmed, H. F. (2021). Melting performance enhancement of a phase change material using branched fins and nanoparticles for energy storage applications. J. Energy Storage, 38, 102513.
[26]. Nitsas, M., & Koronaki, I. P. (2021). Performance analysis of nanoparticles-enhanced PCM: An experimental approach. TSEP, 25, 100963.
[27] Hirt, C. W., & Nichols, B. D. (1981). Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys, 39(1), 201-225.
[28] Brent, A. D., Voller, V. R., & Reid, K. T. J. (1988). Enthalpy-porosity technique for modeling convection-diffusion phase change: application to the melting of a pure metal. Numer. Heat Transf, Part A Applications, 13(3), 297-318.
[29] Humphries, W. R., & Griggs, E. I. (1977). A design handbook for phase change thermal control and energy storage devices (No. NASA-TP-1074).
[30] Chow, L. C., Zhong, J. K., & Beam, J. E. (1996). Thermal conductivity enhancement for phase change storage media. ICHMT, 23(1), 91-100.
[31]  Valan, A. A., Sasmito, A. P., & Mujumdar, A. S. (2013). Numerical performance study of paraffin wax dispersed with alumina in a concentric pipe latent heat storage system. Therm. Sci, 17(2), 419-430.
[32]  Vajjha, R. S., Das, D. K., & Namburu, P. K. (2010). Numerical study of fluid dynamic and heat transfer performance of Al2O3 and CuO nanofluids in the flat tubes of a radiator. Int J Heat Fluid Flow, 31(4), 613-621.
[33] Shirasu, K., Yamamoto, G., Tamaki, I., Ogasawara, T., Shimamura, Y., Inoue, Y., & Hashida, T. (2015). Negative axial thermal expansion coefficient of carbon nanotubes: Experimental determination based on measurements of coefficient of thermal expansion for aligned carbon nanotube reinforced epoxy composites. Carbon, 95, 904-909.
[34]. Shaikh, S., Lafdi, K., & Hallinan, K. (2008). Carbon nanoadditives to enhance latent energy storage of phase change materials. J. Appl. Phys, 103(9), 094302.
[35]. Shatikian, V., Ziskind, G., & Letan, R. (2008). Numerical investigation of a PCM-based heat sink with internal fins: constant heat flux. ICHMT, 51(5-6), 1488-1493.
[36]. Sourtiji, E., Ganji, D. D., & Seyyedi, S. M. (2015). Free convection heat transfer and fluid flow of Cu–water nanofluids inside a triangular–cylindrical annulus. Powder Technol, 277, 1-10.