Analytical investigation of the leg geometric characteristics effect of the electronic board on the shock transmission caused by satellite separation

Authors

1 Ph.D. Student, Faculty of Mechanical and Energy Engineering, Shahid Beheshti University

2 Assist. Prof., Faculty of Mechanical and Energy Engineering, Shahid Beheshti University

3 Assoc. Prof., Faculty of Mechanical and Energy Engineering, Shahid Beheshti University

Abstract

The satellite system is subjected to shock during launch and separation. The shock causes damage to various parts, including the electronic system. In this article, the electronic board of the satellite guidance system has been analytically examined. This board is located on 5 legs that are connected to the body. The purpose of this study is to design the legs so that the least amount of shock is introduced to the electronic board. The electronic board is assumed to be a plate. Effective parameters in shock transmission, including geometrical parameters and the leg angle with the horizon surface, have been studied. The influence of the leg angle with the horizontal surface on the stiffness of the system has been investigated using analytical relations. Finite element simulation has been used to validate the equivalent stiffness. The results of this study show that changing the base angle causes the transmissibility of acceleration to change according to the excitation frequency. Acceleration transmissibility depends on the ratio ω/ω_n . For this reason, different parameters should be selected according to the excitation frequency range. If different parameters are not selected properly, the output acceleration will be higher than the input acceleration.

Keywords


  • Ledezma-Ramirez, D. F., Ferguson, N. S., & Brennan, M. J. (2012). An experimental switchable stiffness device for shock isolation. J. Sound Vib., 331(23), 4987-5001.
  • Park, K. S., Lim, S., Park, Y. P., Chang, Y. B., & Park, N. C. (2012). Shock and vibration isolation of laptop hard disk drive using rubber mount. Microsyst. Technol., 18(9), 1559-1566.
  • Fulcher, B. A., Shahan, D. W., Haberman, M. R., Conner Seepersad, C., & Wilson, P. S. (2014). Analytical and experimental investigation of buckled beams as negative stiffness elements for passive vibration and shock isolation systems. J Vib Acoust, 136(3).
  • Deng, C., Mu, D., Jia, X., & Li, Z. (2016). Effects of rubber shock absorber on the flywheel micro vibration in the satellite imaging system. Photonic Sens., 6(4), 372-384.
  • Tapia-González, P. E., & Ledezma-Ramírez, D. F. (2017). Experimental characterisation of dry friction isolators for shock and vibration. J LOW FREQ NOISE V A, 36(1), 83-95.
  • Ismail, M. I., & Ferguson, N. S. (2017). Passive shock isolation utilising dry friction. Shock. Vib., 2017.
  • Jung, B. H., Kim, Y. W., Lee, J. R., & Kim, D. S. (2019). Visualization of pyroshock wave reduction by insulator using a laser shock based simulation method.  Measurement, 137, 302-311.
  • Cao, X., Wei, C., Liang, J., & Wang, L. (2019). Design and dynamic analysis of metal rubber isolators between satellite and carrier rocket system. Mech. Sci., 10(1), 71-78.
  • Yue, K., Wang, F., Zhang, H., & Li, S. (2019, November). Design and Experiment of Vibration Reduction Scheme for Sensitive Detectors Based on Random Vibration. In IOP Conference Series: Materials Science and Engineering (Vol. 688, No. 3, p. 033085). IOP Publishing.

[10] Wu, Y., Jiang, L., Bai, H., Lu, C., & Li, S. (2019). Mechanical behavior of entangled metallic wire materials under quasi-static and impact loading. Materials, 12(20), 3392.

[11] Ding, J., Zhao, H., Wang, J., Sun, Y., & Chen, Z. (2020). Numerical and experimental investigation on the shock mitigation of satellite-rocket separation. Aerosp Sci Technol, 96, 105538.

[12] Park, H. S., Hwang, D. H., Han, J. H., & Yang, J. (2020). Development of shock-absorbing insert for honeycomb sandwich panel. Aerosp Sci Technol, 104, 105930.

[13] Yan, H., Qin, Z., Chu, F., Zhang, W., Yang, Z., Ming, A., & Wang, X. (2020). Dynamic response of aluminum honeycomb panels to high-frequency laser shock excitations. J Spacecr Rockets, 57(1), 198-201.

[14] Xixiong, W. A. N. G., Tao, Y. U., Huipeng, Y. A. N., Jifeng, D. I. N. G., Zhen, L. I., Zhaoye, Q. I. N., & Fulei, C. H. U. (2021). Application of stress wave theory for pyroshock isolation at spacecraft-rocket interface. Chinese J. Aeronaut., 34(8), 75-86.

 

[15] Hui, A. M., Yan, M., Zhang, L., Jin, Y. L., Wang, K., & Liu, H. (2021). Shock Characteristics of the Opposed Disc Springs (ODS) Shock Isolator with Pretightening under Boundary Friction Condition. Shock. Vib., 2021.

[16] Askari, AR, Lenci, S. Size-dependent response of electrically pre-deformed micro-plates under mechanical shock incorporating the effect of packaging, a frequency-domain analysis, Journal of the Brazilian Society of Int. J. Mech. Sci.. 43 (2021) 1-21.

[17] Younis, MI, Jordy, D, Pitarresi, JM. Computationally efficient approaches to characterize the dynamic response of microstructures under mechanical shock, J Micromech Microeng. 16 (2007) 628-38.

[18] Lee, D. O., Han, J. H., Jang, H. W., Woo, S. H., & Kim, K. W. (2010). Shock response prediction of a low altitude earth observation satellite during launch vehicle separation. Int. J. Aeronaut. Space Sci., 11(1), 49-57.