Leakage localization in a pressurized gas pipe

Author

University of Gonabad

Abstract

In this paper, the position of the leakage in a pressurized gas pipe is localized. As an experimental example, the leakage in a steel pipe is simulated by different orifices. To decrease the risk of explosion and environmental contamination during experiments, pressurized air was used instead of natural gas. Most of the published papers are based on using high sampling rate sensors placed on both sides of the leakage. In this study, a new method is extended due to leakage localization in a gas pipe. To achieve this goal, attenuation analysis is implementing by installing two sensors on one side of the pipe. In the proposed technique, the dominant frequency of recorded signals is used, to decrease the effect of background noises on final results. Experimental results reveal by increasing the pressure the leakage localization error is decreased. Finally, by implementing signal processing into the data the average value of leakage localization error is reported 13.77 cm.

Keywords


[1] Murvay P S, & Silea I (2012) A survey on gas leak detection and localization techniques. J Loss Prevent Proc, 25(6), 966-973.
[2] Zhang J, Lian Z, Zhou Z, Xiong M, Lian M,  Zheng J (2021) Acoustic method of high-pressure natural gas pipelines leakage detection: Numerical and applications. Int J Pres Ves Pip, 194, 104540.
[3] Lau P K, Cheung B W, Lai W W, Sham J (2021) Characterizing pipe leakage with a combination of GPR wave velocity algorithms. Tunn Undergr Sp Tech, 109, 103740.
[4] Wang J, Ren L, Jiang T, Jia Z, Wang G X (2020) A novel gas pipeline burst detection and localization method based on the FBG caliber-based sensor array. Measur , 151, 107226.
[5] Goulet J A, Coutu S, Smith I F (2013) Model falsification diagnosis and sensor placement for leak detection in pressurized pipe networks. Adv Eng Inform, 27(2), 261-269.
[6] Quy T B, Kim J M (2020) Leak detection in a gas pipeline using spectral portrait of acoustic emission signals. Measur , 152, 107403.
[7] Diao X, Jiang J, Shen G, Chi Z, Wang Z, Ni L, Hao Y (2020) An improved variational mode decomposition method based on particle swarm optimization for leak detection of liquid pipelines. Mech Syst Signal Pr, 143, 106787.
[8] Hu Z, Tariq S,  Zayed T (2021) A comprehensive review of acoustic based leak localization method in pressurized pipelines. Mech Syst Signal Pr, 161, 107994.
[9] Meng L, Yuxing L, Wuchang W,  Juntao F (2012) Experimental study on leak detection and location for gas pipeline based on acoustic method. J Loss Prevent Proc, 25(1), 90-102.
[10] Yu L, Li S Z (2017) Acoustic emission (AE) based small leak detection of galvanized steel pipe due to loosening of screw thread connection. Appl Acoust, 120, 85-89.
[11] Zhu J, Ren L, Ho S C, Jia Z, Song G (2017) Gas pipeline leakage detection based on PZT sensors. Smart Mater Struct, 26(2), 025022.
[12] Liang D, Yuan S F, Liu M L (2013) Distributed coordination algorithm for impact location of preciseness and real-time on composite structures. Measur , 46(1), 527-536.
[13] Xiao R, Hu Q, Li J (2021) A model-based health indicator for leak detection in gas pipeline systems. Measurement, 171, 108843.
[14] Kim M S, Lee S K (2009) Detection of leak acoustic signal in buried gas pipe based on the time–frequency analysis. Method. J Loss Prevent Proc, 22(6), 990-994.
[15] Banjara N K, Sasmal S, Voggu S (2020) Machine learning supported acoustic emission technique for leakage detection in pipelines. Int J Pres Ves Pip, 188, 104243.
[16] Cruz R P, Silva F V, Fileti A M (2020) Machine learning and acoustic method applied to leak detection and location in low-pressure gas pipelines. Clean Technol Envir, 22(3), 627-638.
[17] Giurgiutiu V (2007) Structural health monitoring: with piezoelectric wafer active sensors. Elsevier.
[18] Xu C, Du S, Gong P, Li Z, Chen G, Song G (2020) An improved method for pipeline leakage localization with a single sensor based on modal acoustic emission and empirical mode decomposition with Hilbert transform. Ieee Sens J, 20(10), 5480-5491.
]19 [حسینی سبزواری س ا و معاونیان م (1397)، بررسی تجربی اثر دمپرهای الاستیک بر امواج بازتابی از مرزهای یک صفحه به هنگام تشخیص موقعیت منبع صدا، مکانیک سازه­ها و شاره­ها، دوره 8، شماره 3، صفحه 205-212.
 [20] Su Z, Ye L (2009) Identification of damage using Lamb waves: from fundamentals to applications (Vol. 48) Springer Science  Business Media.
[21] Pollock A (1986) Classical wave theory in practical AE testing. Progress in Acoustic Emission III-JAP Society of Non-Destructive Testing, 708-721.
[22] Schmidt D, Sadri H, Szewieczek A, Sinapius M, Wierach P, Siegert I,  Wendemuth A (2013) Characterization of Lamb wave attenuation mechanisms. Health Monit of Structl and Biol Syst. Vol. 8695, pp. 9-16) SPIE.
[23] Schubert K J, Herrmann A S (2011) On attenuation and measurement of Lamb waves in viscoelastic composites. Compos Struct, 94(1), 177-185.
[24] Fan Z, Jiang W, Cai M, Wright W (2016) The effects of air gap reflections during air-coupled leaky Lamb wave inspection of thin plates. Ultrasonics, 65, 282-295.