Proposing an analytical relationship to calculate the damping inclination of rigid single mass impact dampers

Authors

1 bozorgmehr university of qaenat

2 Bozorgmehr University of Qaenat

Abstract

In high amplitude vibrations when there is an impact damper, effective collisions occur between the damper particle and the main structure. These effective collisions cause the energy of the main system decreases significantly. The use of impact dampers in the free vibrations of a system of one degree of freedom reduces the amplitude of vibrations linearly, where the slope of this line is called the damping inclination.The damping inclination is a criterion of the damper performance, whose number indicates the effect of using the impact damper in reducing the vibrations of the oscillating system. In most of the previous researches, the damping inclination has been extracted by numerical or experimental methods, and no formula has been presented to predict the damping inclination. In this research, the effect of parameters of the coefficient of restitution and the mass ratio on the damping inclination of rigid single mass impact dampers has been studied. Then, by analyzing the data, an analytical relationship has been presented to determine the damping inclination according to the coefficient of restitution and mass ratio. This formula predicts the damping inclination with an error of less than six percent and eliminates the need for numerical and experimental studies to determine the damping inclination.

Keywords


[1] Blazejczyk-Okolewska B (2001) Analysis of an impact damper of vibrations. Chaos Soliton Fract 12(11):1983–1988.
[2]  Shinde VL, Pathak AK (2016) Review on particle damping technique for vibration suppression. Int J Innov Res Sci 5(3): 2890-2895.
[3]  Lu Z, Wang Z, Masri SF, Lu X (2017) Particle impact dampers: past, present, and future. Struct Control Health Monit 25(1): e2058.
[4]  Gagnon L, Morandini M, Ghiringhelli GL (2019) A review of particle damping modeling and testing. J Sound Vib 459: 114865.
]5[ زهرائی س م، فرج­اللهی­راد ا (1391) کنترل ارتعاشات به کمک میراگر ضربه­ای. نشریه صوت و ارتعاش 1(1): 5-14.
]6[ زهرائی س م، حیصمی ع (1396) مدل­سازی میراگر ضربه­ای در قاب­های ساختمانی به کمک المان GAP. نشریه علمی پژوهشی مهندسی ساخت و ساز 4(1): 113-125.
[7]  Afsharfard A, Farshidianfar A (2013) Free vibration analysis of nonlinear resilient impact dampers. Nonlinear Dyn 73(2): 155-166.
]8[  صفایی­فر ح، فرشیدیان­فر ا (1398) بررسی تئوری و پارامتریک عملکرد میراگر ضربه­ای قطر متغیر در ارتعاشات آزاد سیستم یک درجه آزادی. مجله علمی پژوهشی مکانیک سازه­ها و شاره­ها 9 (1): 15-26.
[9] Chen J, Georgakis CT (2013) Tuned rolling-ball dampers for vibration control in wind turbines. J Sound Vib 332(21): 5271-82.
[10] Jam JE, Fard AA (2013) Application of Single Unit Impact Dampers to Reduce Undesired Vibration of the 3R Robot Arms. Int J Aerosp Sci 2(2): 49-54.
[11] Xiao W, Huang Y, Jiang H, Lin H, Li J (2016) Energy dissipation mechanism and experiment of particle dampers for gear transmission under centrifugal loads. Particuology 27: 40-50.
[12] Zurawski M, Zalewski R (2020) Damping of Beam Vibrations Using Tuned Particles Impact Damper. Appl Sci 10: 6334.
[13] Wang J, Wang B, Liu Z, Li H, Zhang C (2020) Seismic response mitigation of building structures with a novel vibro-impact dual-mass damper. Eng Struct 215: 110673.
[14] Jin, J, Yang W, Koh H, Park D (2020) Development of tuned particle impact damper for reduction of transient railway vibrations. Appl Acoust, 169: 107487.
[15] Vikovych I, Krainyk L, Zinko R, Popovych V, Horbai O (2021) Design of impact dampers for transporting cargoes by two-link vehicles. East Eur J Enterp Technol 2(7): 85–94.
[16] Jin J, Kim H, Koh H, Park J (2022) Railway noise reduction by periodic tuned particle impact damper with bounce and pitch-coupled vibration modes. Compos struct 284: 115230.
[17] Chaprier R, Chevallier G, Foltete E, Reboul E (2022) Experimental investigations of a vibro-impact absorber attached to a continuous structure. Mech syst signal process 180: 109382.
[18] Masri SF (1969) Analytical and Experimental Studies of Impact Dampers, Ph.D. Thesis, California Institute of Technology.
[19] Masri SF (1969) Analytical and Experimental Studies of Multiple-Unit Impact Dampers. J Acoust Soc Amplif 45(3): 1111-7.
[20] Masri SF (1973) Steady-State Response of a Multidegree System with an Impact Damper. J Appl Mech 40(1): 127-132.
[21] Bapat CN, Sankar S (1985) Single Impact Damper in Free and Forced Vibration. J Sound Vib 99(1): 85-94.
[22] Bai XM, Shah B, Keer LM, Wang QJ, Snurr RQ (2009) Particle dynamics simulations of a piston-based impact damper. Powder Technol 189(1): 115-125.
[23] Semercigil SE, Turan OF, Kopp GA (2011) A particle damper for transient oscillations. Modal Anal Top 3: 153-160.
[24] Gharib M, Ghani S (2012) A novel impact damper consisting of a linear chain of particles. In ASME International Mechanical Engineering Congress & Exposition, Houston, USA.
[25] Michon G, Almjajid A, Aridon G (2013) Soft hollow particle damping identification in honeycomb structures. J Sound Vib 332(3): 536-544.
[26] Egger P, Caracoglia L (2015) Analytical and experimental investigation on a multiple-mass-element pendulum impact damper for vibration mitigation. J Sound Vib 353: 38-57.
[27] Dai K, Wang J, Mao R, Lu Z, Chen SE (2017) Experimental investigation on dynamic characterization and seismic control performance of a TLPD system. Struct Design Tall Spec Build 26(7): 1-13.
[28] Afsharfard A (2018) Application of nonlinear magnetic vibro-impact vibration suppressor and energy harvester. Mech Syst Signal Process 98: 371-381.
[29] Li Y, Shen W, Zhu H (2019) Vibration mitigation of stay cables using electromagnetic inertial mass dampers: Full-scale experiment and analysis. Eng Struct 200: 109693.
[30] Cao J, Fan J, Chen S, Dou C, Gao M (2020) On discontinuous dynamics of SDOF nonlinear friction impact oscillator. Int J Non Linear Mech 121: 103457.
[31] Pillai K, Shahidi AE, Lemckert C (2017) Wave overtopping at berm breakwaters: Experimental study and development of prediction formula. Coast Eng 130: 85–102.
[32] Safaeifar H, Farshidianfar A (2021) Experimental Investigation of Vibratory and Acoustical Behavior of Multiple-unit Impact Dampers in Free Vibration Reduction. Int J Steel Struct 21: 1515-1549.
[33] Safaeifar H, Farshidianfar A (2021) Experimental and Analytical Investigation of Impact Dampers in Free Vibration Reduction with Coulomb Friction. Noise Vib Worldw 53(3): 91-103.
[34] Rao SS (2018) Mechanical Vibrations. 6th edn. Pearson, London.
[35] Meriam JL, Kraige LG, Bolton JN (2015) Engineering Mechanics Dynamics. 8th edn. Wiley, New Jersey.