[1] Miller T. J, McCoy M. J, Hemmings C, Bulsara M. K, Iacopetta B, Platell C. F (2017) The prognostic value of cancer stem-like cell markers SOX2 and CD133 in stage III colon cancer is modified by expression of the immune-related markers FoxP3, PD-L1 and CD3. Pathology 49(7): 721–730.
[2] Liu H, Wang N, Zhang Z, Wang H, Du J, Tang J (2017) Effects of tumor necrosis factor-α on morphology and mechanical properties of HCT116 human colon cancer cells investigated by atomic force microscopy. Scanning.
[3] Taheri M (2022) Investigation of the effect of different friction models on experimental extraction of 3D nanomanipulation force and critical time of colon cancer tissue. Amirkabir Mech Eng 54(4): 791–804.
[4] Hou Y, Wang Z, Li D, Qiu R, Li Y, Jiang J (2017) Cellular shear adhesion force measurement and simultaneous imaging by atomic force microscope. J. of Med Bio Eng 37(1): 102–111.
[5] Pachenari M, Seyedpour S.M, Janmaleki M, Shayan S.B, Taranejoo S, Hosseinkhani H (2014) Mechanical properties of cancer cytoskeleton depend on actin filaments to microtubules content: investigating different grades of colon cancer cell lines. J biomech 47(2): 373-379.
[6] Deptuła P, Lysik D, Pogoda K, Cieśluk M, Namiot A, Mystkowska J, Bucki R (2020) Tissue rheology as a possible complementary procedure to advance histological diagnosis of colon cancer. ACS Biomaterials Eng 6(10): 5620-5631.
[7] Qin Y, Yang W, Chu H, Li Y, Cai S, Yu H, Liu L (2022) Atomic Force Microscopy for Tumor Research at Cell and Molecule Levels. Microscopy Microanalysis 28(3): 585-602.
[8] Zarei B, Bathaee S. H, Taheri M, Momeni M (2019) Second phase of nanomanipulation of particles by atomic force microscopy using Coulomb, HK, and LuGre Friction Models. Modares Mech Eng 19(1): 181-190.
[9] Taheri M (2016) Manipulation dynamic modeling for micro/nano-devices manufacturing using the LuGre friction model. Iranian Manufac Eng 3(2): 45-53
[10] Nosonovsky M, Bhushan B (2007) Multiscale friction mechanisms and hierarchical surfaces in nano-and bio-tribology. Materials Sci Eng 58(3-5): 162-193.
[11] Taheri M (2016) 3D-Dynamic modeling and simulation of biological nanoparticle motion using AFM nano–robot. Modares Mech Eng 15(12): 311-316.
[12] Zakeri M, Kharazmi M (2015) Modeling of Friction in Micro/Nano scale with Random Roughness Distribution. Modares Mech Eng 14(11): 175-184.
[13] Taheri M. (2017) 3D Modeling of Gold Nanoparticle Manipulation in Air Using HK Friction Model. Modares Mech Eng 16(10): 275-282.
[14] Taheri M (2022) The use of atomic force microscopy in the extraction of force and critical time of 2D Manipulation for gastric cancer with different frictional models. Nanoscale 9(1): 136 -145.
[15] Korayem A. H, Korayem M. H, Taheri M (2015) Robust controlled manipulation of nanoparticles using the AFM nanorobot probe. Arabian J. Sci Eng 40(9): 2685-2699.
[16] Fada H, Soleimani A, Sadeghian H (2019) Analysis of Transient Tip-Sample Interactions in High Speed Tapping Mode Atomic Force Microscopy with the Purpose of Damage Prevention. Modares Mech Eng 19(8): 1827-1836.
[17] Mohammadi S.Z, Pishkenari H. N, Moghaddam M.M, Sajjadi M (2021) Controlled manipulation of a bio-particle using trolling mode atomic force microscope: a simulation study. Journal Nanoparticle 23(10): 1-15.
[18] Korayem M, Estaji M, Homayooni A (2017) Molecular dynamic modeling of bioparticles nanomanipulation based on AFM: investigating substrate effects. Modares Mech Eng 17(3): 437-445.
[19] Moshirpanahi A, Haghighi S.E, Imam A (2021) Dynamic modeling of a cylindrical nanoparticle manipulation by AFM. Eng Techno Journal 24(3): 611-619.
[20] Korayem M.H, Taheri M, Korayem A.H (2014) Manipulation with atomic force microscopy: DNA and yeast micro/nanoparticles in biological environments. J. Multi Dynamics 228(4): 414-425.