Numerical and experimental study of orthogonal cutting bone using elastic-plastic material model and dynamic damage model

Authors

1 Department Of Mechanical Engineering, Arak University Of Technology , Arak, Iran

2 Department of mechanical engineering, Arak university Of technology, Arak,Iran

3 Ph.D, Mech. Eng., Machining group of Arak Univ. of Tech., Arak, Iran

4 Department Of Mechanical engineering, Arak University of technology>Arak,Iran

5 Arak University

Abstract

Today, bone machining is known as one of the most important steps in orthopedic surgery. With accurate and effective simulation of machining process can achieve faster patient recovery and high efficiency in surgery. Accordingly, estimating and controlling the production temperature in machining is necessary to prevent excessive heat generation and thermal damage to the bone. The study of the orthogonal cutting process is important because of the basis of other machining processes. Therefore, an experimental and numerical study was performed for orthogonal machining. An elastic-plastic model was used as the material model to predict cortical bone behavior in finite element simulation. The damage model was used for complete material failure, tool penetration and chip formation. The simulation was done for the first time with the damage model and its results were analyzed for the first time with the response surface method and sensitivity analysis using the Sobel method for each parameter separately and the interaction of the parameters. The simulation results are in agreement with the experimental results. According to the optimization, the minimum temperature is about 26ºC when the cutting depth is 0.1 mm, the cutting speed is about 192 mm/s and the rake angle is 12º. This study can be effective in further advancing the bone machining process and lead to progress in orthopedic surgery, optimization of machining parameters and tool design.

Keywords


[1] Arrington, E. D., Smith, W. J., Chambers, H. G., Bucknell, A. L., & Davino, N. A. (1996). Complications of iliac crest bone graft harvesting.Clin. Orthop. Relat. Res., 329, 300-309.
[2] Harrysson, O. L., Hosni, Y. A., & Nayfeh, J. F. (2007). Custom-designed orthopedic implants evaluated using finite element analysis of patient-specific computed tomography data: femoral-component case study. BMC Musculoskelet. Disord. 8(1), 1-10.
[3] Shakouri, E., Sadeghi, M. H., Karafi, M. R., Maerefat, M., & Farzin, M. (2015). An in vitro study of thermal necrosis in ultrasonic-assisted drilling of bone. Proc Inst Mech Eng H P I MECH ENG H 229(2), 137-149.
[4] Shakouri, E., Haghighi Hassanalideh, H., & Fotuhi, S. (2021). Bone drilling with internal gas cooling: Experimental and statistical investigation of the effect of cooling with CO 2 on reduction of temperature rise due to drill bit wear. APEM, 16(2).
[5] Shakouri, E., Sadeghi, M. H., Maerefat, M., & Shajari, S. (2014). Experimental and analytical investigation of the thermal necrosis in high-speed drilling of bone. Proc Inst Mech Eng H P I MECH ENG H, 228(4), 330-341.
[6] Sarparast, M., Ghoreishi, M., Jahangirpoor, T., & Tahmasbi, V. (2019). Modelling and optimisation of temperature and force behaviour in high-speed bone drilling. Biotechnol. Biotechnol. Equip. 33(1), 1616-1625.
[7] Yeager, C., Nazari, A., & Arola, D. (2008). Machining of cortical bone: surface texture, surface integrity and cutting forces. Mach. Sci, 12(1), 100-118.
[8] Lee, J., Chavez, C. L., & Park, J. (2018). Parameters affecting mechanical and thermal responses in bone drilling: A review.   J. Biomech., 71, 4-21.
[9] Hillery, M. T., & Shuaib, I. (1999). Temperature effects in the drilling of human and bovine bone. J. Mater. Process. Technol. 92, 302-308.
[10] Alam, K., Mitrofanov, A. V., & Silberschmidt, V. V. (2009). Finite element analysis of forces of plane cutting of cortical bone. J. Adv. Manuf. Technol, 46(3), 738-743.
[11] Saghafi, B., Ghoreishi, M., & Narooei, K. (2019). Prediction of safe zone for osteonecrosis in the cutting process of bovine cortical femur bone using Arbitrary Lagrangian-Eulerian method and multi-objective optimization. J. Adv. Manuf. Technol, 104(5), 2031-2043.
[12] Rosidi, A., Ginta, T. L., & Rani, A. M. B. A. (2017). Optimization of bone drilling parameters using Taguchi method based on finite element analysis. IOP Conf. Ser.: Mater. Sci. Eng (Vol. 203, No. 1, p. 012016). IOP Publishing.
[13] Lee, J., Rabin, Y., & Ozdoganlar, O. B. (2011). A new thermal model for bone drilling with applications to orthopaedic surgery. Med Eng Phys, 33(10), 1234-1244.
[14] Sui, J., Sugita, N., Ishii, K., Harada, K., & Mitsuishi, M. (2014). Mechanistic modeling of bone-drilling process with experimental validation. J. Mater. Process. Technol., 214(4), 1018-1026.
[15] Sezek, S., Aksakal, B., & Karaca, F. (2012). Influence of drill parameters on bone temperature and necrosis: A FEM modelling and in vitro experiments. Comput. Mater. Sci., 60, 13-18.
[16] Davidson, S. R., & James, D. F. (2003). Drilling in bone: modeling heat generation and temperature distribution. J. Biomech. Eng., 125(3), 305-314.
[17] Shin, H. C., & Yoon, Y. S. (2006). Bone temperature estimation during orthopaedic round bur milling operations. J. Biomech, 39(1), 33-39.
[18] Sugita, N., Osa, T., & Mitsuishi, M. (2009). Analysis and estimation of cutting-temperature distribution during end milling in relation to orthopedic surgery. Med Eng Phys, 31(1), 101-107.
[19] Liao, Z., Axinte, D., & Gao, D. (2019). On modelling of cutting force and temperature in bone milling. J. Mater. Process. Technol., 266, 627-638.
[20] Arbabtafti, M., Moghaddam, M., Nahvi, A., Mahvash, M., Richardson, B., & Shirinzadeh, B. (2010). Physics-based haptic simulation of bone machining. IEEE T HAPTICS, 4(1), 39-50.
[21] Al-Abdullah, K. I. A. L., Abdi, H., Lim, C. P., & Yassin, W. A. (2018). Force and temperature modelling of bone milling using artificial neural networks. Measurement, 116, 25-37.
[22] Noordin, M. Y., Jiawkok, N., Ndaruhadi, P. Y. M. W., & Kurniawan, D. (2015). Machining of bone: Analysis of cutting force and surface roughness by turning process. Proc Inst Mech Eng H P I MECH ENG H, 229(11), 761-768.
[23] Qasemi, M., Sheikhi, M., Zolfaghari, M., & Tahmasbi, V. (2020). Experimental Investigation, Mathematical Modeling and Optimization of Cutting Forces in the Automatic Process of Cortical Bone Milling. Modares Mechanical Engineering, 20(4), 987-997.
]24[قریشی م, ذوالفقاری م, طهماسبی و, حیدری ح. (2018). مدل سازی ریاضی، تحلیل حساسیت سوبل و بهینه سازی رفتار دما در فرآیند سوراخ کاری اتوماتیک استخوان. مهندسی مکانیک مدرس, 18(5), 142-153.‎
[25] Hill, R. T. (1952). On discontinuous plastic states, with special reference to localized necking in thin sheets. J Mech Phys Solids, 1(1), 19-30.
[26] Hill, R. (1990). Constitutive modelling of orthotropic plasticity in sheet metals. J Mech Phys Solids, 38(3), 405-417.
 
[27] Cowper, G. R., & Symonds, P. S. (1957). Strain-hardening and strain-rate effects in the impact loading of cantilever beams. Brown Univ Providence Ri.
[28] Sobol, I. M. (1993). Sensitivity analysis for non-linear mathematical models. Mathematical modelling and computational experiment, 1, 407-414.
[29] Santiuste, C., Rodríguez-Millán, M., Giner, E., & Miguélez, H. (2014). The influence of anisotropy in numerical modeling of orthogonal cutting of cortical bone. Compos. Struct, 116, 423-431.
[30] Lughmani, W. A., Bouazza-Marouf, K., & Ashcroft, I. (2015). Drilling in cortical bone: a finite element model and experimental investigations. J Mech Behav Biomed Mater, 42, 32-42.
[31] Singh, G., Jain, V., Gupta, D., & Ghai, A. (2016). Optimization of process parameters for drilled hole quality characteristics during cortical bone drilling using Taguchi method. J Mech Behav Biomed Mater, 62, 355-365.
 
[32] Singh, G., Jain, V., Gupta, D., & Ghai, A. (2016). Optimization of process parameters for drilled hole quality characteristics during cortical bone drilling using Taguchi method. J Mech Behav Biomed Mater, 62, 355-365.
[33] Pandey, R. K., & Panda, S. S. (2015). Optimization of bone drilling using Taguchi methodology coupled with fuzzy based desirability function approach. J. Intell. Manuf, 26(6), 1121-1129.
[34] Montgomery, D. C. (2017). Design and analysis of experiments. John wiley & sons.
[35] Pandey, R. K., & Panda, S. S. (2015). Optimization of bone drilling using Taguchi methodology coupled with fuzzy based desirability function approach. J. Intell. Manuf, 26(6), 1121-1129.
[36] Tahmasbi, V., Safari, M., & Joudaki, J. (2020). Statistical modeling, Sobol sensitivity analysis and optimization of single-tip tool geometrical parameters in the cortical bone machining process. Proc Inst Mech Eng H P I MECH ENG H, 234(1), 28-38.
[37] Korayem, M. H., & Rastegar, Z. (2012). Application of nano-contact mechanics models in manipulation of biological nano-particle: FE simulation. IJNN 8(1), 35-50.‏