Experimental investigation into the energy absorption of sandwich structures with the core made of waste rubber particles under impact loading

Authors

1 M.Sc. Student, Mechanical Engineering Faculty, Guilan University, Rasht, Iran

2 Assistant Professor, Department of Chemistry, Faculty of Science, Islamic Azad University, Varamin-Pishva Branch ,Varamin, Iran

3 universityof guilan

4 University of Guilan

5 Faculty of Mechanical Engineering, University of Guilan

Abstract

In this research, the plastic deformation and failure mechanism of sandwich structures with aluminum face-sheets and waste rubber particles core under low-velocity impact loading have been investigated. The drop hammer testing machine was used to apply the impact load to the sample at seven different energy levels 34.3, 68.6, 102.9, 137.2, 154.3, 171.5, and 205.8 J. To achieve the mentioned energy levels, the weight of the hammer was considered constant and equal to 3.5 kg and the standoff distance of the hammer was changed from 1 to 6.5 m. 10 test samples were considered in two types of layering with and without the core of rubber particles. In this series of experiments, the thickness of aluminum face-sheets was constant at 1 mm and two different thicknesses of 16 and 32 mm were considered for the core. Experimental results showed that, the sandwich panel with 16 mm had a 37 and 18 % smaller deformed area for fall heights of 2 and 3 meters, respectively, due to the less porous space between two aluminum face-sheets. Also, compared to the coreless sandwich structure, the use of a low-mass waste rubber particle cores at low energy levels increased the front sheet perforation diameter by 19 %.

Keywords


[1] Deng Y, Zhang Y, Xiao X, Hu A, Wu H, Xiong J (2020) Experimental and numerical study on the ballistic impact behavior of 6061-T651 aluminum alloy thick plates against blunt-nosed projectiles. Int. J. Impact Eng., 144:103659.
[2] Rahimijonoush A, Bayat M (2020) Experimental and numerical studies on the ballistic impact response of titanium sandwich panels with different facesheets thickness ratios. Thin-Walled Struct., 157:107079.
[3] Mostofi TM, Sayah-Badkhor M, Rezasefat M, Ozbakkaloglu T, Babaei H (2020) Gas mixture detonation load on polyurea-coated aluminum plates. Thin-Walled Struct., 155:106851.
[4] Rezasefat M, Mirzababaie Mostofi T, Babaei H, Ziya-Shamami M, Alitavoli M (2019) Dynamic plastic response of double-layered circular metallic plates due to localized impulsive loading. Proc. Inst. Mech. Eng., Part L: J. Mater.: Des. Appl., 233(7):1449-1471.
[5] Safri S, Sultan M, Yidris N, Mustapha F (2014) Low velocity and high velocity impact test on composite materials–a review. Int J Eng Sci, 3(9):50-60.
[6] Goldsmith W, Sackman JL (1992) An experimental study of energy absorption in impact on sandwich plates. Int. J. Impact Eng., 12(2):241-262.
[7] Olsson R, McManus HL (1996) Improved theory for contact indentation of sandwich panels. AIAA J., 34(6):1238-1244.
[8] Mines R, Worrall C, Gibson A (1998) Low velocity perforation behaviour of polymer composite sandwich panels. Int. J. Impact Eng, 21(10):855-879.
[9] Alghamdi A (2001) Collapsible impact energy absorbers: an overview. Thin-Walled Struct., 39(2):189-213.
[10] Kádár C, Maire E, Borbély A, Peix G, Lendvai J, Rajkovits Z (2004) X-ray tomography and finite element simulation of the indentation behavior of metal foams. Mater. Sci. Eng., A, 387:321-325.
[11] Cao J, Grenestedt JL(2004) Design and testing of joints for composite sandwich/steel hybrid ship hulls. Composites Part A, 35(9):1091-1105 .
[12] Tan PJ, Reid SR, Harrigan JJ, Zou Z, Li S (2005) Dynamic compressive strength properties of aluminium foams. Part II—‘shock’theory and comparison with experimental data and numerical models. J. Mech. Phys. Solids, 53(10):2206-2230.
[13] Nia AA, Razavi S, Majzoobi G (2008) Ballistic limit determination of aluminum honeycombs—experimental study. Mater. Sci. Eng., A, 488(1-2):273-280.
[14] Bhuiyan MA, Hosur M, Jeelani S (2009) Low-velocity impact response of sandwich composites with nanophased foam core and biaxial (±45) braided face sheets. Composites Part B, 40(6):561-571.
[15] Li M, Deng Z, Liu R, Guo H (2011) Crashworthiness design optimisation of metal honeycomb energy absorber used in lunar lander. Int. J. Crashworthiness, 16(4):411-419.
[16] Ahmadi H, Liaghat G, Sabouri H, Bidkhouri E (2013) Investigation on the high velocity impact properties of glass-reinforced fiber metal laminates. J. Compos. Mater, 47(13):1605-1615.
[17] Hassanpour Roudbeneh F, Liaghat G, Sabouri H, Hadavinia H (2019) Experimental investigation of impact loading on honeycomb sandwich panels filled with foam. Int. J. Crashworthiness, 24(2):199-210.
[18] Mousavizadeh SA, Hosseini M, Hatami H, Kamalvand M (2020) Studies on the effect of reinforcers types on flat and curved steel sheets’ performance under drop impact. AEROSPACE MECHANICS JOURNAL, 16(4):39-59.
[19] Bashiri A, Hosseini M, Hatami H (2019) Experimental and Numerical Analysis of Single and Double layered Aluminum Sheet 3105 With Mechanical Joints under Drop Weight Impact. Journal Of Applied and Computational Sciences in Mechanics, 30(2):109-123.
[20] Hatami H, Dalvand A, Chegeni AS (2020) Experimental investigation of impact loading effects on rectangular flat panels of fiber self-compacting cementations composite with expanded steel sheet. J. Braz. Soc. Mech. Sci. Eng., 42(6):1-23.
[21] دالوند ا, حاتمی ح, صیدی چگنی آ (1400) بررسی آزمایشگاهی تاثیر بارگذاری دینامیکی بر پنل های مسلح مستطیلی ساخته شده با کامپوزیت سیمانی خود تراکم الیافی و ورق های مشبک. مهندسی سازه و ساخت، دوره 1، شماره 8، صفحه 131-151.
[22] Damghani Noori M, Hatami H, Ghodsbin Jahromi A (2015) Experimental Investigation of Expanded Metal Tube Absorbers under Axial Impact Loading. Modares Mechanical Engineering, 15(1):371-378.
[23] Hatami H, Fathollahi AB (2018) Theoretical and Numerical Study and Comparison of the Inertia Effects on the Collapse Behavior of Expanded metal tube Absorber with Single and Double Cell under Impact Loading. Amirkabir Journal of Mechanical Engineering, 50(5):999-1014.
[24] Ma’at N, Nor MKM, Ho CS, Latif NA, Kamarudin K-A, Jamian S, Ibrahim MN, Awang MK (2019) Effects of Temperatures and Strain Rate on the Mechanical Behaviour of Commercial Aluminium Alloy AA6061. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 54(1):21-26.
[25] موسوی زاده ا، حسینی م، حاتمی ح (1400) بررسی تجربی و عددی عملکرد ورق های فولادی ساده و تقویت شده با لچکی تحت ضربه سقوط آزاد، مهندسی مکانیک ایران، دوره 23، شماره 1، صفحه 64-84.
 
[26] Hatami H, Hosseini M (2019) Elastic-plastic analysis of bending moment–axial force interaction in metallic beam of T-Section. Journal of Applied and Computational Mechanics, 5(1):162-173.