Thermodynamic and Exergoeconomic modeling of a modified Organic Rankine Cycle (ORC) augmented with heat exchanger Provided by geothermal source

Author

Ph.D., Mech. Eng., Tarbiat Modares Univ., Tehran, Iran

Abstract

In the present study, the effect of a heat exchanger on the performance of Combined Rankin Organic Cycle (ORC) and geothermal was investigated. The hot water r coming out of the ground enters a liquid-vapor separator. The generated steam enters the steam turbine section and the liquid section enters a heat exchanger to superheat the refrigerant and rotate the ORC turbine Energy, exergy and exerco-economic modeling was performed using EES software and SPECO method in a wide range of different working fluids. The results showed that the output power of the system has a maximum point in terms of separator pressure for a simple cycle, but increases ascending for the modified cycle without limitation. In terms of energy analysis, modified cycle with heat exchanger compared to the simple cycle, R237ea and n-Pentane have the highest amounts of increasing at the efficiency and power generation are maximum with 45.4 and 40%, respectively. In terms of power generation cost savings, R237ea and R123 with 0.63 and 0.55 (cent / kW-hr), respectively. Cis-2-butene with 6376 kW in terms of power generation and R237ea in terms of cost savings in power generation are the best refrigerants.

Keywords

Main Subjects


[1] Boehler R (1996), Melting temperature of the Earth's mantle and core: Earth's thermal structure. Annu Rev Earth Planet Sci  24(1):15–40.
[2] Aneke M, Agnew B, Underwood C (2011), performance analysis of the Chena binary geothermal power plant. Appl Therm Eng 31(10):1825–1832.  
[3] Bombarda P,  Invernizzi C, Pietra C (2010), Heat recovery from diesel engines: A thermodynamic comparison between Kalina and ORC cycles. Appl Therm Eng 31(30):212–219.
[4] Muñoz Escalona J, Sánchez D, Chacartegui R, Sánchez T (2012), Partloadanalysis of gas turbine & ORC combined cycles. Appl Therm Eng 29(36):63–72.
[5] Aneke M, Agnew B, Underwood C (2011), performance analysis of the Chena binary geothermal power plant. Appl Therm Eng 31(10):1825–1832.
[6] Kanoglu M, Bolatturk A (2008), Performance and parametric investigation of a binary geothermal power plant by exergy. Renew. Energy 33(11):2366–2374.
 [7] Yari M (2010), Exergetic analysis of  various types of geothermal power plants. Renew. Energy 35(1):112–121.
[8] Hettiarachchi HDM, Golubovic M, Worek WM, Ikegami Y (2007), Optimum design criteria for an Organic Rankine cycle using low-temperature geothermal heat sources. Energy 32(9):1698–1706.
[9] Franco A, Villani M (2009), Optimal design of binary cycle power plants for water dominated, medium-temperature geothermal fields.  Geothermics 38(4):379–391.
[10] Bombarda P, Invernizzi C, Pietra C (2012), Heat recovery from diesel engines: A thermodynamic comparison between Kalina and ORC cycles. Appl Therm Eng  31(30):212–219.
[11] Karellas S, Schuster A, Leontaritis AD (2012), Influence of supercritical ORC parameters on plate heat exchanger design. Appl Therm Eng 31(36):33–34.
[12] Wei D, Lu X, Lu Z, Gu J (2008), Dynamic modeling and simulation of an Organic Rankine Cycle (ORC) system for waste heat recovery. Appl Therm Eng 31(28):1216–1224.
[13] RongJi X, Hem Y (2011), A vapor injector-based novel regenerative  organic Rankine cycle. Appl Therm Eng  31(31):1238–1243.
[14] DiPippo R (2004), Second Law assessment of binary plants generating power from low-temperature geothermal fluids. Geothermics 33(5):565–86.
[15] DiPippo R (2007), Ideal thermal efficiency for geothermal binary plants. Geothermics 36(3):276–285.
]16[ رنجبر سیدفرامرز، نعمتی آرش، کلاهی محمدرضا. (1397). تحلیل ترمودینامیکی و بهبود عملکرد چرخه ی تولید توان زمین گرمایی ترکیبی رانکین آلی و فلش با استفاده از سیال کاری زئوتروپیک در چرخه ی رانکین آلی. مهندسی مکانیک دانشگاه تبریز. 2 (83):131-138.
 
]17[ عبدالعلی پورعدل مهران، خلیل آریا شهرام، جعفرمدار صمد. (1397). تحلیل اگزرژی چرخه ی ترکیبی پیشنهادی دی اکسید کربن فوق بحرانی و رانکین آلی از منبع زمین گرمایی سبلان. مهندسی مکانیک مدرس. 22-11 : (4) 18.
]18[ کاظمیان محمد احسان, گنجعلیخان نسب سید عبدالرضا, ، جهانشاهی جواران ابراهیم. (1400). بهینه سازی عملکرد سیکل رانکین آلی مبتنی بر مطالعه مقایسه ای روش‌های باکس-بهنکن و مرکب مرکزی مکانیک سازه‌ها و شاره‌ها, 11(2): 219-232.
]19[ باروتکوب حسین، حنیفی میانگفشه کاوه، یاری مرتضی. (1396). طراحی و تحلیل سیستم جدید سیکل رنکین آلی با محرک اولیه توربین گاز SGT -۴۰۰ مطالعه موردی: منطقه نار- کنگان (جنوب ایران). مهندسی مکانیک مدرس. ۱۷ (۱۲) : ۳۷۲-۳۶۱.
]20[ شوکتی, ناصر, رنجبر, دکتر سیدفرامرز. (1394). تحلیل ترمودینامیکی و اگزرژواکونومیکی ترکیب سیکل تولید توان زمین گرمایی با سیکل کالینا و سیکل رانکین با سیال‌های آلی مختلف. مکانیک سازه‌ها و شاره‌ها, 5(1), 177-192.
[21] Bejan A, Tsatsaronis G, Moran M (1996), Thermal Design and Optimization. John Wiley & Sons  408-427.
[22] Mohammadkhani F, Shokati N, Mahmoudi S.M.S, Yari M, Rosen M.A (2014), Exergoeconomic assessment and parametric study of a Gas Turbine-Modular Helium Reactor combined with two Organic Rankine Cycles, Energy  65:533–543.
 [23]  Kamyar D, Mehdi A, Farideh A, Marc A. (2015), Selection of Optimum  Working Fluid for Organic Rankine Cycles by Exergy and Exergy-Economic Analyses, Sustainability  7:15362–15383.