Free Vibration Analysis of Piezoelectric Nanobeam Based on a 2ِِD- Formulation and Non-local Elasticity Theory

Authors

1 Department of Mechanical Engineering, University of Zanjan, Zanjan, Iran

2 University of Zanjan

Abstract

The present paper presents an accurate and efficient method for the analysis of free vibration of piezoelectric nanobeam. In this method, Eringen's nonlocal elasticity theory is used to apply the small-scale effects. Despite the shear deformation theories, in the present theory, the displacement and strain fields are considered as a general form, and out-of-plane normal strain is not neglected. The governing equations of piezoelectric nanobeam are derived by employing Hamilton's principle. By solving these equations, natural frequencies related to flexural and thickness modes for the free vibration of nanobeam are obtained. The Convergence of the predicted results is studied, and the effects of various parameters such as nonlocal parameter, length to thickness ratio, and applied external voltage are investigated. To verify the accuracy of the present method, the results predicted by the present theory are compared with those of the theories available in the literature and the finite element method. This study shows that the natural frequencies predicted by the present theory are smaller than those of shear deformation theories. The results of this study show that the natural frequency of the piezoelectric nanobeam increases by increasing the negative applied electric voltage as well as tensile axial load and decreasing the nonlocal parameter. The results show that the natural frequencies related to thickness modes are not negligible and the shear deformation theories, the present theory can predict these frequencies.

Keywords

Main Subjects


[1] Pohanka, M. (2017) The piezoelectric biosensors: Principles and applications. Int. J. Electrochem. Sci. 12: 496-506.
[2] Elahi, H., Munir, K., Eugeni, M., Abrar, M., Khan, A., Arshad, A., and Gaudenzi, P. (2020) A review on applications of piezoelectric materials in aerospace industry. Integr. Ferroelectr. 211(1): 25-44.
[3] Li, Z.X., Yang, X.M. and Li, Z. (2006) Application of cement-based piezoelectric sensors for monitoring traffic flows, J. Transp. Eng. 132(7): 565-573.
[4] Uchino, K. (2008) Piezoelectric actuators. J. Electroceramics 20(3-4): 301-311. 
[5] Yeh, C.H., Su, F.C., Shan, Y.S., Dosaev, M., Selyutskiy, Y., Goryacheva, I., and Ju, M.S. (2020) Application of piezoelectric actuator to simplified haptic feedback system. Sens. Actuator A Phys. 303: 111820.
[6] Gao, X., Yang, J., Wu, J., Xin, X., Li, Z., Yuan, X., Shen, X., and Dong, S. (2020) Piezoelectric actuators and motors: materials, designs, and applications. Adv. Mater. Technol. 5(1): 1900716, 2020.
[7] Spanner, K. and Koc, B. (2016) Piezoelectric motors, an overview. Actuators 5(1): 6.
[8] Schöner, H.P. (1992) Piezoelectric motors and their applications. Int. Trans. Electr. 2(6): 367-371.
[9] Uchino, K. (2008) Piezoelectric motors and transformers. In Piezoelectricity, Springer, Berlin, Heidelberg.
[10] Jiang, W., Mayor, F.M., Patel, R.N., McKenna, T.P., Sarabalis, C.J. and Safavi-Naeini, A.H. (2020) Nanobenders as efficient piezoelectric actuators for widely tunable nanophotonics at CMOS-level voltages. Commun. Phys.  3(1): 1-9.
[11] SoltanRezaee, M. and Bodaghi, M. (2020) Simulation of an electrically actuated cantilever as a novel biosensor.  Sci. Rep. 10(1): 1-14.
[12] Hui, Y., Gomez-Diaz, J.S., Qian, Z., Alu, A. and Rinaldi, M. (2016) Plasmonic piezoelectric nanomechanical resonator for spectrally selective infrared sensing. Nat. Commun. 7(1): 1-9.
[13] Bradley, D.I., George, R., Guénault, A.M., Haley, R.P., Kafanov, S., Noble, M.T., Pashkin, Y.A., Pickett, G.R., Poole, M., Prance, J.R. and Sarsby, M. (2017) Operating nanobeams in a quantum fluid. Sci. Rep. : 7(1), 1-8.
[14] Mindlin, R. D. and Tiersten, H. F. (1962) Effects of couple-stresses in linear elasticity. Arch. Rational Mech. Anal 11: 415–448.
[15] Toupin, R.A. (1964) Theories of elasticity with couple-stress. Arch. Ration. Mech. Anal. 17(2): 85-112.
[16] Hadi, A., Nejad, M.Z., Rastgoo, A., and Hosseini, M. (2018) Buckling analysis of FGM Euler-Bernoulli nano-beams with 3D-varying properties based on consistent couple-stress theory. Steel and Compos. Struct. 26(6): 663-672.
[17] Beni, Y.T., Mehralian, F. and Razavi, H. (2015) Free vibration analysis of size-dependent shear deformable functionally graded cylindrical shell on the basis of modified couple stress theory. Compos. Struct. 120: 65-78.
[18] Yang, F. A. C. M., Chong, A. C. M., Lam, D. C. C., and Tong, P. (2002) Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39(10): 2731-2743.
[19] Park, S. K., and Gao, X. L.  (2006) Bernoulli–Euler beam model based on a modified couple stress theory. J. Micromech. Microeng. 16(11): 2355.
[20] Mindlin, R. D., and Eshel, N. N. (1968) On first strain-gradient theories in linear elasticity. Int. J. Solids Struct. 4(1): 109-124.
[21] Wang, J., Shen, H., Zhang, B., Liu, J., and Zhang, Y. (2018) Complex modal analysis of transverse free vibrations for axially moving nanobeams based on the nonlocal strain gradient theory. Phys. E: Low-Dimens. Syst. Nanostructures. 101: 85-93.
[22] Ebrahimi, F. and Barati, M.R. (2016) Wave propagation analysis of quasi-3D FG nanobeams in thermal environment based on nonlocal strain gradient theory.  Appl. Phys. A 122(9): 843.
[23] Ansari, R., Pourashraf, T. and Gholami, R. (2015) An exact solution for the nonlinear forced vibration of functionally graded nanobeams in thermal environment based on surface elasticity theory. Thin-Walled Struct.  93: 169-176.
[24] Wang, G. F., Feng, X. Q., and Yu, S. W. (2007) Surface buckling of a bending microbeam due to surface elasticity. EPL 77(4): 44002.
[25] Sahmani, S., Aghdam, M.M. and Bahrami, M. (2015) On the free vibration characteristics of postbuckled third-order shear deformable FGM nanobeams including surface effects. Compos. Struct. 121: 377-385.
[26] Eringen, A. C., and Edelen, D. G. B. (1972) On nonlocal elasticity. Int. J. Eng. Sci. 10(3): 233-248.
[27] Eringen, A. C. (1983) On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54(9): 4703-4710.
[28] Eringen, A.C. and Wegner, J.L. (2003) Nonlocal continuum field theories. Appl. Mech. Rev. 56(2): B20-B22.
 [29] Ke, L.L. and Wang, Y.S. (2012) Thermoelectric-mechanical vibration of piezoelectric nanobeams based on the nonlocal theory. Smart Mater. Struct. 21(2): 025018.
[30] Ke, Liao-Liang, Yue-Sheng Wang, and Zheng-Dao Wang. (2012) Nonlinear vibration of the piezoelectric nanobeams based on the nonlocal theory. Compos. Struct. 94(6): 2038-2047.
[31] Liu, C., Ke, L.L., Wang, Y.S., Yang, J. and Kitipornchai, S. (2014) Buckling and post-buckling of size-dependent piezoelectric Timoshenko nanobeams subject to thermo-electro-mechanical loadings. Int. J. Struct. Stab. Dyn. 14(03): 1350067.
[32] Kaghazian, A., Hajnayeb, A. and Foruzande, H. (2017) Free vibration analysis of a piezoelectric nanobeam using nonlocal elasticity theory. Struct. Eng. Mech. 61(5): 617-624.
[33] Ragb, O., Mohamed, M. and Matbuly, M.S. (2019) Free vibration of a piezoelectric nanobeam resting on nonlinear Winkler-Pasternak foundation by quadrature methods. Heliyon 5(6): 01856.
 [34] Mohtashami, M. and Beni, Y.T.  (2019) Size-dependent buckling and vibrations of piezoelectric nanobeam with finite element method. IJST-T CIV. ENG. 43(3): 563-576.
[35] Ebrahimi, F. and Barati, M.R. (2017) Buckling analysis of nonlocal third-order shear deformable functionally graded piezoelectric nanobeams embedded in elastic medium. J. Braz. Soc. Mech. Sci. Eng. 39(3): 937-952.
[36] Zhang, D., Liu, M., Wang, Z., and Lei, Y. (2021) Thermo-electro-mechanical vibration of piezoelectric nanobeams resting on a viscoelastic foundation. J. Phys. Conf. Ser. 1759(1): 012029, 2021.
[37] Hao-nan, L., Cheng, L., Ji-ping, S., and Lin-quan, Y. (2021) Vibration Analysis of Rotating Functionally Graded Piezoelectric Nanobeams Based on the Nonlocal Elasticity Theory. J. Vib. Eng. Technol.:1-19.
[38] Li, Y.S., Ma, P. and Wang, W. (2016) Bending, buckling, and free vibration of magnetoelectroelastic nanobeam based on nonlocal theory. J. Intell. Mater. Syst. Struct. 27(9): 1139-1149.
 [39] Eltaher, M.A., Omar, F.A., Abdalla, W.S. and Gad, E.H. (2019) Bending and vibrational behaviors of piezoelectric nonlocal nanobeam including surface elasticity. Waves Random Complex Media 29(2): 264-280.
[40] Tadi Beni, Y. (2016) Size-dependent electromechanical bending, buckling, and free vibration analysis of functionally graded piezoelectric nanobeams. J. Intell. Mater. Syst. Struct. 27(16): 2199-2215.
]41[ قربانپور آرانی، ع.، عبدالهیان، م.، و کلاهچی, ر. (۱۳۹۳) کمانش الکتروترمومکانیکی نانوتیر پیزوالکتریک با استفاده از تئوری های الاستیسیته گرادیان کرنشی و تیر ردی. نشریه علمی مکانیک سازه ها و شاره ها، ۳۳-۲۳ :(۳)۴
[42] Najafi, M. and Ahmadi, I. (2021) A nonlocal Layerwise theory for free vibration analysis of nanobeams with various boundary conditions on Winkler-Pasternak foundation. STEEL COMPOS. STRUCT. 40(1): 101-119.
[43] Srinivas, S., Rao, C. J., and Rao, A. K. (1970) An exact analysis for vibration of simply-supported homogeneous and laminated thick rectangular plates. J. SOUND VIB. 12(2): 187-199.
[44] Aimmanee, S., and Batra, R. C. (2007) Analytical solution for vibration of an incompressible isotropic linear elastic rectangular plate, and frequencies missed in previous solutions. J. SOUND VIB. 302(3) 613-620.
[45] Dong, K. and Wang, X. (2006) Influences of large deformation and rotary inertia on wave propagation in piezoelectric cylindrically laminated shells in thermal environment. INT. J. SOLIDS STRUCT. 43(6): 1710-1726.
[46] Liu, Y.F. and Wang, Y.Q. (2019) Thermo-electro-mechanical vibrations of porous functionally graded piezoelectric nanoshells. J. Nanomater. 9(2): 301.