Experimental comparison of microstructure and surface properties of Al / Al2O3 sample produced by powder metallurgy and spark plasma sintering methods

Authors

1 Birjand University of Iran , Birjand , Iran

2 Birjand University of Iran, Birjand, Iran

Abstract

Due to the high importance of manufacturing methods with metal powders such as aluminum, in this study, using pure aluminum powder, samples were made by two methods of powder metallurgy and spark plasma sintering, and then the samples in terms of microstructure, hardness. Abrasion resistance and corrosion resistance were evaluated. Spark plasma sintering method compared to powder metallurgy method shows significant improvement in hardness, microstructure density, increased wear resistance, and corrosion of aluminum. This improvement can be attributed to the high speed and temperature of the sintering process as well as the simultaneous application of force and temperature, resulting in a more complete density of the structure. The coefficient of wear and hardness increased from 0.9 and 43 Brinell in powder metallurgy method to 0.8 and 49.3 Brinell in spark plasma sintering method, respectively. Also, according to the results of corrosion test, the linear corrosion resistance of sintering-plasma-spark sample is higher than powder metallurgy sample.

Keywords

Main Subjects


[1] Raj, S. A., Jana, D. C., Barick, P., & Saha, B. P. (2018). Microstructure evolution in densification of SiC ceramics by aluminium vapour infiltration and investigation of mechanical properties. Ceram. Int, 44(8), 9221-9226.
[2] Akinwamide, S. O., Abe, B. T., Akinribide, O. J., Obadele, B. A., & Olubambi, P. A. (2020). Characterization of microstructure, mechanical properties and corrosion response of aluminium-based composites fabricated via casting—a review. Int. J. Adhes. Adv Manuf Technol, 109(3), 975-991.
[3] Saheb, N., & Hayat, U. (2017). Electrical conductivity and thermal properties of spark plasma sintered Al2O3-SiC-CNT hybrid nanocomposites. Ceram Interna, 43(7), 5715-5722.
[4] C. Lall and W. Health, Int. J. Powder Metall. 36, 45 (2000)
[5] F. V. Beaumont, Int. J. Powder Metall. 36, 41 (2000).
[6] Kumar, C. A. V., & Rajadurai, J. S. (2016). Influence of rutile (TiO2) content on wear and microhardness characteristics of aluminium-based hybrid composites synthesized by powder metallurgy. Trans. Nonfe Met Soci China, 26(1), 63-73.
[7] Jiang, H., Xu, Z., Xiu, Z., Jiang, L., Gou, H., Zhou, C., & Wu, G. (2018). Effects of pulse conditions on microstructure and mechanical properties of Si3N4/6061Al composites prepared by spark plasma sintering (SPS). J. Alloys Compd, 763, 822-834.
[8] Abdullah, Y., & Kamarudin, N. (2012). Al/B4C composites with 5 And 10 wt% reinforcement content prepared by powder metallurgy. J. Nuc and Tech, 9(01), 43-48. [9] R.Q. Guo, P.K. Rohatgi, D. Nath, J. Mater. Sci. 32 (1997) 3971–3974.
[10] Sayyed Mohammad Reza Sedehi, Mohammad Khosravi, Yadollah Yaghoubinezhad, Mechanical properties and microstructures of reduced graphene oxide reinforced titanium matrix composites produced by spark plasma sintering and simple shear extrusion, Ceram Interna,Volume 47, Issue 23, 2021, P 33180-33190.
[11] Saboori, A., Novara, C., Pavese, M., Badini, C., Giorgis, F., & Fino, P. (2017). An investigation on the sinterability and the compaction behavior of aluminum/graphene nanoplatelets (GNPs) prepared by powder metallurgy. J. Mater. Eng. Perform., 26(3), 993-999.
[12] Bunakov, N. A., Kozlov, D. V., Golovanov, V. N., Klimov, E. S., Grebchuk, E. E., Efimov, M. S., & Kostishko, B. B. (2016). Fabrication of multi-walled carbon nanotubes–aluminum matrix composite by powder metallurgy technique. Resu phys, 6, 231-232.
[13] A.E. Nassar, E.E. Nassar, J. King Saud Univ. – Eng. Sci., (2015).
[14] Dixit, M., & Srivastava, R. K. (2018, June). Effect of compaction pressure on microstructure, density and hardness of copper prepared by powder metallurgy route. In IOP conference series: Mater. Sci. Eng (Vol. 377, No. 1, p. 012209). IOP Publishing.
[15] Rahimian, M., Ehsani, N., Parvin, N., & reza Baharvandi, H. (2009). The effect of particle size, sintering temperature and sintering time on the properties of Al–Al2O3 composites, made by powder metallurgy. J. Mater. Proce Tech, 209(14), 5387-5393.
[16] Sun, C., Song, M., Wang, Z., & He, Y. (2011). Effect of particle size on the microstructures and mechanical properties of SiC-reinforced pure aluminum composites. J. Mater. Eng. Perform, 20(9), 1606-1612.
[17] Kwon, H., Mondal, J., AlOgab, K. A., Sammelselg, V., Takamichi, M., Kawaski, A., & Leparoux, M. (2017). Graphene oxide-reinforced aluminum alloy matrix composite materials fabricated by powder metallurgy. J. Alloys Compd, 698, 807-813.
[18] Qian, M., & Schaffer, G. B. (2010). Sintering of aluminium and its alloys. In Sintering of advanced materials (pp. 291-323). Woodhead Publishing.
[19] Boland, C. D., Hexemer Jr, R. L., Donaldson, I. W., & Bishop, D. P. (2013). Industrial processing of a novel Al–Cu–Mg powder metallurgy alloy. Mater. Sci. Eng: A, 559, 902-908.
[20] Sweet, G. A., Amirkhiz, B. S., Williams, B. W., Taylor, A., Hexemer, R. L., Donaldson, I. W., & Bishop, D. P. (2019). Microstructural evolution of a forged 2XXX series aluminum powder metallurgy alloy. Mater. Charact, 151, 342-350.
[21] Cooke, R. W., Kraus, N. P., & Bishop, D. P. (2016). Spark plasma sintering of aluminum powders prealloyed with scandium additions. Mater. Sci. Eng: A, 657, 71-81.
[22] Khalil, A., Hakeem, A. S., & Saheb, N. (2011). Optimization of process parameters in spark plasma sintering Al6061 and Al2124 aluminum alloys. Adv. Mater. Res (Vol. 328, pp. 1517-1522). Trans Tech Publications Ltd.
[23] Steinfeld, B., Scott, J., Vilander, G., Marx, L., Quirk, M., Lindberg, J., & Koerner, K. (2015). The role of lean process improvement in implementation of evidence-based practices in behavioral health care. J. Beha Health Serv & Res, 42(4), 504-518.
[24]  Khademi DA, Babakhani AB. Investigation of Mechanical Properties of Al-Al2O3 Composites Synthesized By Spark Plasma Sintering. J. New Mater. 2017 Jan 20;7(26):49-58.
[25] Majed Zabihi, Esmaeil Emadoddin, Fathallah Qods, Processing of Al/Al2O3 Composite Using Simple Shear Extrusion (SSE), Manufactured by Powder Metallurgy (PM), · Metall. Mater.Inter ,https://doi.org/10.1007/s12540-019-00299-y
[26] Langdon TG. The processing of ultrafine-grained materials through the application of severe plastic deformation. J Mater Sci 2007;42:338897.
[27] Gürbüz, M., Can Şenel, M., & Koç, E. (2018). The effect of sintering time, temperature, and graphene addition on the hardness and microstructure of aluminum composites. J. Compos. mater, 52(4), 553-563.
[28] Liu, J., & Liang, C. (2017). Microstructure characterization and mechanical properties of bulk nanocrystalline aluminium prepared by SPS and followed by high-temperature extruded techniques. Materials Letters, 206, 95-99.
[29] F. Zhou, J. Lee, S. Dallek, E.J. Lavernia, J. Mater. Res. 16 (12) (2001) 3451–3458.
[30] Dark, T. A., Beamish, R. J., McFarlane, G. A., Nelson Jr, R. E., Anderson, E., West, C. W., ... & Kudo, G. US DEPARTMENT OF COMMERCE Malcolm Baldrige, Secretary.
[31] Thiago M. Ribeiro, Eduardo Catellan, Amauri Garcia, Carlos. The effects of Cr addition on microstructure,hardness and tensile properties of as-cast Al–3.8wt.%Cu–(Cr) alloys, j m a t e r r e s t e c h n o l . 2 0 2 0;9(3):6620–6631
[32] Cheng, L., Liu, C., Han, D., Ma, S., Guo, W., Cai, H., & Wang, X. (2019). Effect of graphene on corrosion resistance of waterborne inorganic zinc-rich coatings. J. Alloys Compd, 774, 255-264.
[33] Wen, L., Wang, Y. M., Liu, Y., Zhou, Y., Guo, L. X., Ouyang, J. H., & Jia, D. C. (2011). EIS study of a self-repairing microarc oxidation coating. Corros. Sci., 53(2), 618-623.
[34] Zhang, Y., Chen, F., Zhang, Y., & Du, C. (2020). 1Influence of graphene oxide additive on the tribological and electrochemical corrosion properties of a PEO coating prepared on AZ31 magnesium alloy. Tribol Interna, 146, 106135.
[35] Yaghoubinezhad, Y., & Afshar, A. (2015). Experimental design for optimizing the corrosion resistance of pulse reverse electrodeposited graphene oxide thin film. J. Solid State Electrochem., 19(5), 1367-1380.