Simulation and Optimizations of Truck’s Cabin Structure Exposed to Explosion

Authors

1 MSc, Faculty of Automotive Engineering, Iran University of Science and Technology, Tehran, Iran

2 Ph.D. candidate, Mechanical Engineering, Islamic Azad University South Tehran Branch, Tehran, Iran

3 Ph.D, candidate, Instructor, Mechanical Engineering Department/ Engineering Facility/ Imam Ali Officers' University/Tehran/ Iran

Abstract

One of the casualties in war zones is casualties due to the explosion of explosives near vehicles. The important issue in these vehicles isn’t to seriously injure the occupant during the explosion. It is necessary to optimize of the cabin structure of heavy vehicles to achieve high-performance vehicles. In this article, the 3-d model of the truck is created to study the effect of exploding near and under a truck and to optimize the truck cabin. The model is meshed by square and 10 mm^2 elements. Then, explosion tests are simulated in two situation: explosion under the vehicle and explosion near the truck according to AEP-55. In the explosion test under the car,using 4 kg TNT equivalent on the ground surface and In the test near the truck, using 8 kg TNT equivalent at the distance of 3 meter at the same level by under cabin surface and the amount of occupant injuries are checked. For meeting the requirements of the explosion and because this truck platform is a commercial vehicle, vehicle floor panels’ material and thickness are modified. The thickness of important parts include 1. Side floor panel 2. Middle floor panel 3. Front side panel 4. Front Panel 5 Door Panel are optimized in 16 modes and Only 7 modes meet the requirements of the explosion test under the vehicle. The optimal mode is 571.39 kg which has decreased 79.72 kg compared to the first mode meet AEP-55 requirements and has decreased 3.31kg compared to the initial mode.

Keywords

Main Subjects


  • یوسفی ع، خلخالی ا، مهدوی ع (1400). شبیه‌سازی عددی و بهینه‌سازی استحکام اتاق کامیون. سازه‌ها و شاره‌ها. 11(4): 15–31  
  • Suhaimi K, Risby MS, Tan KS, Knight VF. (2016) Simulation on the shock response of vehicle occupant subjected to underbelly blast loading. Procedia - Procedia Comput Sci.;80:1223–31.
  • Vlahopoulos N, Zhang G. (2010) Validation of a Simulation Process for Assessing the Response of a Vehicle and Its Occupants To an Explosive Threat. 27th Army Sci Conf.;8.
  • Dooge D, Dwarampudi R, Schaffner G, Miller A. (2011) Ground Vehicle Systems Engineering and Technology Symposium a Ugust 9-11 D Earborn , M Ichigan Evolution of Occupant Survivability Simulation Framework Using Fem-Sph Coupling Evolution of Occupant Survivability Simulation;
  • Arepally S, Gorsich D, Hope K, Gentner S, Drotleff K. (2008) Application of Mathematical Modeling in Potentially Survivable Blast Threats in Military Vehicles. Proc 26th Army Sci Conf.;1–8.
  • Bir C, Barbir A, Dosquet F, Wilhelm M. (2008) Validation of Lower Limb Surrogates as Injury Assessment Tools in Floor Impacts due to Anti-Vehicular Land Mines.;173:1180–4.
  • Bailey AM, Christopher JJ, Henderson K, Brozoski F, Salzar RS.(2013) Comparison of Hybrid‐III and PMHS Response to Simulated Underbody Blast Loading Conditions.;7288:158–70.
  • Erdik A. (2019) Investigation of dynamic response of a mannequin in a vehicle exposed to land mine blast. Sak Univ J Sci.;23:1–10.
  • Denefeld V, Heider N, Holzwarth A, Sättler A, Salk M. (2014) Reduction of global effects on vehicles after IED detonations. Def Technol.;10(2):219–25.
  •  Xiang Y, Wang Q, Fan Z, Fang H. (2006) Optimal crashworthiness design of a spot-welded thin-walled hat section. Finite Elem Anal Des. 1;42(10):846–55.
  •  زاهدی‌نیا م, حسینی ر, خدارحمی ح. (1397) مطالعه تجربی و عددی تغییر شکل صفحات چندلایه کامپوزیت-فلز (FML) با ضخامت‌های یکسان تحت بارگذاری انفجاری. مکانیک سازه‌ها و شاره‌ها.;8(4):129–42.
  •  Pandelani T, Modungwa D. (2022) The response of Military Lower Extremity and Hybrid III leg using the Hybrid III and EuroSID-2 ATD in vertical loading impacts. Traffic Inj Prev.10;
  •  Husni Mubarok MA, Muttaqie T, Prabowo AR, Sohn JM, Surojo E, Imaduddin F. (2022) Effects of Geometrical Variations on the Performance of Hull Plate Structures under Blast Load: A Study using Nonlinear FEA. Procedia Struct Integr.;41:282–9.
  •  Ciepielewski R, Gieleta R, Miedzinska D (2022). Experimental Study on Static and Dynamic Response of Aluminum Honeycomb Sandwich Structures;
  •  Lim J, Jang YS, Chang HS, Park JC, Lee J. (2018) Role of multi-response principal component analysis in reliability-based robust design optimization: an application to commercial vehicle design. Struct Multidiscip Optim; 58(2):785–96.
  • (NSA) NSA. PROCEDURES FOR EVALUATING THE PROTECTION LEVEL OF ARMOURED VEHICLES - IED THREAT.
  •  افشار م (1399). شبیه سازی و بهینه سازی لوله های برخورد جانبی کامپوزیتی در خودرو. پایان‌نامه برای دریافت درجه کارشناسی ارشد در رشته مهندسی خودرو گرایش سازه و بدنه خودرو.
  •  
  •  موسی‌زاده ا. (1399) بهینه سازی سفتی فریم موتورسیکلت برقی. پایان نامه کارشناسی ارشد، دانشگاه علم و صنعت.
  •  Tabiei  a, Lawrence C, Fasanella EL. )2009( Validation of Finite Element Crash Test Dummy Models ofr the Prediction of Orion Crew Member Injruies during a Simulated Vehicle Landing. 10th LS-DYNA users Conf.;(5):1–28.
  • خاکی جامعی م (2017). بررسی عددی تأثیر نانوسیال بر راندمان چاه حرارتی میکرئ کانالی با استفاده از روش تاگوچی. مجله علمی پژوهشی مکانیک سازه‌ها و شاره‌ها.;7(1):275–87.