Theoretical and Experimental Behavior Analysis of Continuous Soft Robots Consisting of Fiber-Reinforced Actuators

Authors

Mechanical Engineering Department/ Amirkabir University of Technology

Abstract

In this paper, quasi-static analysis of a continuous soft robot made up of three fiber-reinforced actuators is performed. For this purpose, the kinematic and dynamic equations of this robot are extracted and numerically solved by considering it as a Cosserat rod. The resultant equations are dependent on the length of the rod's curvature, and thus can only simulate forces and strains in the longitudinal direction. Due to the difficulties of applying radial forces in this model, the modeling of a single fiber-reinforced actuator using nonlinear elasticity equations is then presented. Finally, by solving these equations, the strains resulting from radial stresses are calculated and integrated with the strains obtained from Cosseart rod model. Experiments have been carried out to validate the proposed theory. For this purpose, the robot end effector position is extracted using image processing methods and compared with the presented models. The experimental results show that applying the effect of radial pressures to the Cosserat model improves the relative error by 13.48%.

Keywords

Main Subjects


[1]  Hülse M, Wischmann S, Pasemann F (2005) The role of non-linearity for evolved multifunctional robot behavior. In Moreno JM, Madrenas J, Cosp J (eds) Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics): vol. 3637 LNCS, 108–118. Springer Berlin Heidelberg.
[2] Ijspeert AJ, Crespi A, Cabelguen JM (2005) Simulation and robotics studies of salamander locomotion. Neuroinformatics, 3(3): 171–195.
[3] Schilling M, Paskarbeit J, Hoinville T, Hüffmeier A, Schneider A, Schmitz J, Cruse H (2013) A hexapod walker using a heterarchical architecture for action selection. Front. Comput. Neurosci. vol 7.
[4] Seok S, Onal CD, Cho KJ, Wood RJ, Rus D,  Kim S (2013) Meshworm: A Peristaltic Soft Robot With Antagonistic Nickel Titanium Coil Actuators. IEEE/ASME Trans Mechatronics, 18(5): 1485–1497.
[5] Marques HG, Jäntsch M, Wittmeier S, Holland O, Alessandro C, Diamond A, Lungarella M, Knight, R (2010) ECCE1: The first of a series of anthropomimetic musculoskeletal upper torsos. 2010 10th IEEE-RAS Int. Conf. Humanoid Robot., 391–396.
[6] Shirai T, Urata J, Nakanishi Y, Okada K, Inaba M (2011) Whole body adapting behavior with muscle level stiffness control of tendon-driven multijoint robot. 2011 IEEE Int. Conf. Robot. Biomimetics, 2229–2234.
[7] Ott C, Henze B, Lee D (2013) Kinesthetic teaching of humanoid motion based on whole-body compliance control with interaction-aware balancing. 2013 IEEE/RSJ Int. Conf. Intell. Robot. Syst., 4615–4621.
[8] Robinson G, Davies JBC (1999) Continuum robots-a state of the art. Proceedings Proc. 1999 IEEE Int. Conf. Robot. Autom. (Cat. No.99CH36288C), vol.4, 2849–2854.
[9] Webster RJ, Jones BA (2010) Design and kinematic modeling of constant curvature continuum robots: A review. Int. J. Rob. Res., 29(13): 1661–1683.
[10] Burgner-Kahrs J, Rucker DC, Choset H (2015) Continuum Robots for Medical Applications: A Survey. IEEE Trans. Robot., 31(6): 1261–1280.
[11] امیدرضا احمدزاده، حامد غفاری راد، محمد زارعی نژاد (1398) تعیین جرم با استفاده از تحلیل تئوری و تجربی پاسخ فرکانسی عملگرهای پیزوالکتریک خمشی. مکانیک سازه‌ها و شاره‌ها، 39-27 :(4)9.
[12] رضا خرم آبادی، جلیل رضایی پژند (1399) بررسی تجربی و عددی ارتعاشات ورق کامپوزیتی کمانش یافته تقویت شده با سیم آلیاژ حافظه‌دار تحت عملیات حرارتی. مکانیک سازه‌ها و شاره‌ها، 106-93 :(1)10.
[13] محمدصادق فایض، علی داور، جعفر اسکندری جم، محسن حیدری بنی (1399) تحلیل ارتعاشات آزاد پوسته‌ استوانه‌ای مشبک کامپوزیتی تقویت شده با نانولوله‌های کربنی با استفاده از تئوری برشی مرتبه اول. مکانیک سازه‌ها و شاره‌ها، 96-77 :(4)10.
[14] محمد مهدی فاتح، مهدی سوزنچی کاشانی، علی اصغر عرب (1393) کنترل مود لغزشی- فازی ربات با مفاصل انعطاف پذیر. مکانیک سازه‌ها و شاره‌ها، 32-22: (4)3.
[15] Black CB, Till J, Rucker DC (2018) Parallel Continuum Robots: Modeling, Analysis, and Actuation-Based Force Sensing. IEEE Trans. Robot., 34(1): 29–47.
[16] Black C (2017) Modeling, Analysis, Force Sensing and Control of Continuum Robots for Minimally Invasive Surgery. PhD thesis, The University of Tennessee, Knoxville.
[17] Orekhov AL, Bryson CE, Till J, Chung S, Rucker DC (2015) A surgical parallel continuum manipulator with a cable-driven grasper. Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS, 5264–5267.
[18] Orekhov AL, Black CB, Till J, Chung S, Rucker DC (2016) Analysis and Validation of a Teleoperated Surgical Parallel Continuum Manipulator. IEEE Robot. Autom. Lett., 1(2): 828–835.
[19] Ding J, Goldman RE, Xu K, Allen PK, Fowler DL, Simaan N (2013) Design and Coordination Kinematics of an Insertable Robotic Effectors Platform for Single-Port Access Surgery. IEEE/ASME Trans. Mechatronics, 18(5): 1612–1624.
[20] Simaan N, Xu K, Wei W, Kapoor A, Kazanzides P, Taylor R, Flint P (2009) Design and Integration of a Telerobotic System for Minimally Invasive Surgery of the Throat. Int. J. Rob. Res., 28(9): 1134–1153.
[21] Mahl T, Hildebrandt A, Sawodny O (2014) A Variable Curvature Continuum Kinematics for Kinematic Control of the Bionic Handling Assistant. IEEE Trans. Robot., 30(4): 935–949.
[22] Orekhov AL, Aloi VA, Rucker DC (2017) Modeling parallel continuum robots with general intermediate constraints. 2017 IEEE Int. Conf. Robot. Autom., 6142–6149.
[23] Falkenhahn V, Mahl T, Hildebrandt A, Neumann R, Sawodny O (2015) Dynamic Modeling of Bellows-Actuated Continuum Robots Using the Euler-Lagrange Formalism. IEEE Trans. Robot., 31(6): 1483–1496.
[24] Godage IS, Guglielmino E, Branson DT, Medrano-Cerda GA, Caldwell DG (2011) Novel modal approach for kinematics of multisection continuum arms. 2011 IEEE/RSJ Int. Conf. Intell. Robot. Syst., 1093–1098.
[25] Zhang Z, Dequidt J, Kruszewski A, Largilliere F, Duriez C (2016) Kinematic modeling and observer based control of soft robot using real-time finite element method. IEEE Int. Conf. Intell. Robot. Syst., 5509–5514.
[26] Trivedi D, Lotfi A, Rahn CD (2007) Geometrically exact dynamic models for soft robotic manipulators. IEEE Int. Conf. Intell. Robot. Syst., 24(4): 1497–1502
[27] Largillière F, Coevoet E, Sanz-Lopez M, Grisoni L, Duriez C (2016) Stiffness rendering on soft tangible devices controlled through inverse FEM simulation. 2016 IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS), 5224–5229.
[28] Shapiro Y, Gabor K, Wolf A (2015) Modeling a Hyperflexible Planar Bending Actuator as an Inextensible Euler–Bernoulli Beam for Use in Flexible Robots. Soft Robot., 2(2): 71–79.
[29] Kim S, Laschi C, Trimmer B (2013) Soft robotics: A bioinspired evolution in robotics. Trends Biotechnol., 31(5): 287–294.
[30] Cao DQ, Tucker RW (2008) Nonlinear dynamics of elastic rods using the Cosserat theory: Modelling and simulation. Int. J. Solids Struct., 45(2): 460–477.
 [31] Renda F, Giorgio-Serchi F, Boyer F, Laschi C, Dias J, Seneviratne L (2018) A unified multi-soft-body dynamic model for underwater soft robots. Int. J. Rob. Res., 37(6): 648–666.
[32] Till J, Rucker DC (2017) Elastic rod dynamics: Validation of a real-time implicit approach. 2017 IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS), 3013–3019.
[33] Till J, Aloi V, Rucker C (2019) Real-time dynamics of soft and continuum robots based on Cosserat rod models. Int. J. Rob. Res., 38(6): 723–746.
[34] Connolly F, Walsh CJ, Bertoldi K (2017) Automatic design of fiber-reinforced soft actuators for trajectory matching. Proc. Natl. Acad. Sci. USA., 114(1): 51–56.
[35] Kassianidis F (2010) Boundary-value problems for transversely isotropic hyperelastic solids. PhD thesis, University of Glasgow.
[36] Antman SS (2005) Nonlinear Problems of Elasticity. 2nd edn. Springer-Verlag, New York.