[1] Bacha H.B, Maalej A.Y, Dhia H.B, Ulber I, Uchtmann H, Engelhardt M, Krelle J, (1999) Perspectives of solar-powered desalination with the “SMCEC†technique. Desalination 122(2-3): 177-183.
[2] Soufari S.M, Zamen M, Amidpour M, (2008) Design and manufacture of optimum solar desalination system by humidification-dehumidification method,آ 12th National Congress of Iranian Chemical Engineering, Sahand University of Technology, Tabriz, Iran.
[3] Jahanshahi Javaran E, Hossein Khani A, Mohammadi S.M, (2016) Manufacturing and simulation of solar humidification-dehumidification desalination system. Modares Mech Eng 16(12): 239-248.
[4] Nawayseh N.K, Farid M.M, Al-Hallaj S, Al-Timimi A.R, (1999) Solar desalination based on humidification process—I. Evaluating the heat and mass transfer coefficients. Energy Conv. Manag 40(13): 1423-1439.
[5] Nawayseh N.K, Farid M.M, Omar A.A, Al-Hallaj S.M, Tamimi A.R, (1997) A simulation study to improve the performance of a solar humidification-dehumidification desalination unit constructed in Jordan. Desalination 109(3): 277-284.
[6] Ettouney R, Fawzi N, El-Rifai M, Ettouney H, (2012) Flue gas desulfurization and humidification dehumidification in power plants. Desalin. Water Treat 37(1-3): 337-349.
[7] Mehrgoo M, Amidpour M, (2012) Constructal design and optimization of a direct contact humidification–dehumidification desalination unit. Desalination 293: 69-77.
[8] Giwa A, Fath H, Hasan S.W, (2016) Humidification–dehumidification desalination process driven by photovoltaic thermal energy recovery (PV-HDH) for small-scale sustainable water and power production. Desalination 377: 163-171.
[9] Kassim M.A, Benhamou B, Harmand S, (2011) Effect of air humidity at the entrance on heat and mass transfers in a humidifier intended for a desalination system. Appl. Therm. Eng 31(11-12): 1906-1914.
[10] Treybal R.E, (1980) Mass transfer operations, New York.
[11] Zhang L, Chen W, Zhang H, (2013) Study on variation laws of parameters in air bubbling humidification process. Desalin. Water Treat 51(16-18): 3145-3152.
[12] Summers S.M, Antar M.A, Lienhard J, (2012) Design and optimization of an air heating solar collector with integrated phase change material energy storage. J. Sol. Energy 86: 3417–3429.
[13] Carmona M, Palacio M, (2019) Thermal modelling of a flat plate solar collector with latent heat storagevalidated with experimental data in outdoor conditions. J. Sol. Energy 177: 620–633.
[14] Hu T, Hassabou A.H, Spinnler M, Polifke W, (2011) Performance analysis and optimization of direct contact condensation in a PCM fixed bed regenerator. Desalination 280: 232–243.
[15] Badiei Z, Eslami M, Jafarpur K, (2019) Performance Improvements in Solar Flat Plate Collectors by Integrating with Phase Change Materials and Fins: A CFD Modeling. Energy J 192: 1-41.
[16] Abuska M, Sevik S, Kayapunar A, (2019) Experimental analysis of solar air collector with PCM-honeycomb combination under the natural convection. Sol. Energy Mater. Sol. Cells 195: 299-308.
[17] Ananno A.A, Masud M.M, Dabnichki P, Ahmed A, (2020) Design and numerical analysis of a hybrid geothermal PCM flat plate solar collector drver for developinf countries. J. Sol. Energy 196: 270-286.
[18] Palacio M, Rincon A, Carmona M, (2020) Experimental comparative analysis of a flat plate solar collector with and without PCM. J. Sol. Energy 206: 708-721.
[19] Radhwan A, Gari H, Elsayed M, (1993) Parametric study of a packed bed dehumidifier/regenerator using CaCl2 liquid desiccant. Renew. Energy 3(1): 49-60.
[20] Ghalavand Y, Rahimi A, Hatamipour M.S, (2018) Mathematical modeling for humidifier performance in a compression desalination system: Insulation effects. Desalination 433: 48–55.
[21] Chapra S.C, Canale R.P, (1998) Numerical methods for engineers, Mcgraw-hill New York.
[22] Bergman T.L, Incropera F.P, DeWitt D.P, Lavine A.S, (2011) Fundamentals of heat and mass transfer, John Wiley & Sons.
[23] Kakac S, Liu H, Pramuanjaroenkij A, (2002) Heat exchangers: selection, rating, and thermal design, CRC press.