Investigation of the effect of several impressive parameters on fire extinguishing in a progressive coal tunnel

Authors

1 M.Sc Student, Mech. Eng., Sharif University of Technology, Tehran, Iran.

2 Ph.D Student. Mechanical Eng. Sharif University of Technology. Tehran. Iran

3 Professor

4 Prof., Mech. Eng., Sharif University of Technology, Tehran, Iran

Abstract

Using Fire Dynamic Simulator (FDS) software, this study investigates the effects of sprinklers, branches and blowing fan on fire in a 40-meter-long coal mine tunnel corridor. This study has shown that nozzles, despite reducing the visibility due to water evaporation, will reduce the temperature throughout the corridor and reduce the concentration of carbon dioxide by 15,000 ppm at the farthest point. A branch in a corridor and providing an evacuation route from the damaged area will increase the time for different parts of the mine to remain safe in terms of temperature and the concentration of harmful gases. On the other hand, if the branch is close to the fire, it will cause the fire to spread due to providing the required oxygen. The presence of a blowing fan for ventilation in the tunnel corridor, despite faster fire extinguishing and a 46% reduction in the average temperature on the fire source, will increase the concentration of carbon monoxide by 7.5 ppm at the farthest point. Also, the nozzles connected to the thermocouple, due to the lack of Time Response Index (RTI) compared to sprinklers, are more effective in fire controlling and will reduce the temperature on the fire source by 69%.

Keywords

Main Subjects


[1] Sinha PR (1986) Mine fires in Indian coalfields. Energy, 11(11-12), 1147-1154.
[2] Farahani JV (2014) Man-made major hazards like earthquake or explosion; case study, Turkish mine explosion (13 may 2014). IR J of Public Health 43(10): 1444.
[3] Ray SK, Singh RP (2007) Recent developments and practices to control fire in undergound coal mines. Fire Technol 43(4): 285-300.
[4] Li Y, Zhang X, Sun X, Zhu N (2021) Maximum temperature of ceiling jet flow in longitudinal ventilated tunnel fires with various distances between fire source and cross-passage. Tunnelling and UnderG Space Technol 113: 103953.
[5] Wu E, Huang R, Wu L, Shen X, Li Z (2020) Numerical study on the influence of altitude on roof temperature in mine fires. IEEE Access 8: 102855-102866.
[6] Cao B, Yang L, Wang H, Xu Q, Li B (2021) Numerical study on the different prevention methods for fire and smoke in utility tunnel fire. In IOP Conf. Ser. Earth and Environmental Sci. 675(1): 012045 IOP Publishing.
[7] Stewart CM, Aminossadati SM, Kizil MS (2015) Underground fire rollback simulation in large scale ventilation models. In 15th North American Mine Vent. Symposium.
[8] Adjiski V, Mirakovski D, Despodov Z, Mijalkovski S (2015) Simulation and optimization of evacuation routes in case of fire in underground mines. J of Sustainable Mining 14(3): 133-143.
[9] Zhang LL, Li CY (2017) Effect of inert gas injection on gas explosion in the process of sealing fire zone. In IOP Conf. Ser. Earth and Environmental Sci. 59(1): 012044 IOP Publishing.
[10] Haghighat A, Luxbacher K (2018) Tenability analysis for improvement of firefighters’ performance in a methane fire event at a coal mine working face. J of Fire Sci 36(3): 256-274.
[11] Heidarinejad G, Vasheghani Farahani R (2018) Numerical Simulation of Fire in Tunnel with Ventilation and Suppression Systems. Modares Mech Eng 18(8): 209-220.
[12] Jian-guo W, Rui-meng W, Yan-qiu W, Jun-kai S (2019) Numerical Simulation of Smoke Variation During Fire in Intake Airways on a Coal Mining Face. In Proc. of the 11th Int. Mine Vent. Cong. (pp. 652-663). Springer, Singapore.
[13] Lee J (2019) Numerical analysis on the rapid fire suppression using a water mist nozzle in a fire compartment with a door opening. Nuclear Eng and Technol 51(2): 410-423.
 
[14] Rosema A, Guan H, Veld H (2001) Simulation of spontaneous combustion, to study the causes of coal fires in the Rujigou Basin. Fuel 80(1): 7-16.
[15] Yeoh GH, Yuen KK (2009) Computational fluid dynamics in fire engineering: theory, modelling and practice. Butterworth-Heinemann.
[16] McGrattan K, Hostikka S, McDermott R, Floyd J, Weinschenk C, Overholt K (2013) Fire Dynamics Simulator user’s guide. NIST Special Publication 1019(6): 1-339.
]۱۷[ جوشقانی م (۱۳۸۳). بررسی ساختارهای بزرگ حرکتی در پدیده جابجایی آزاد پلوم با استفاده از شبیه­سازی گردابه­ای بزرگ. دانشگاه صنعتی شریف.
[18] Turns SR (2000) An introduction to combustion: concepts and applications. McGrw-Hill.
]۱۹ [حیدری‌نژاد ق، پاسدارشهری ه، صفرزاده م (1399) اهمیت استفاده از مدل احتراقی و زیرشبکه مناسب به‌منظور مدل‌سازی الگوی جریان در آتش استخری بزرگ‌مقیاس. نشریه مهندسی مکانیک امیرکبیر 52(9): 2425-2442.
[۲۰] پارسا س، محمدیان ا، افشین ح، فرهانیه ب (۱۴۰۰) بررسی تأثیر نسبت ابعاد دریچه و شرایط منبع احتراق بر رفتار پدیده بازافروختگی به روش شبیه-سازی گردابه‌‌های بزرگ. مجله مکانیک سازه ها و شاره ها 11(3): 165-179.
[21] Deming W, Xingshen W, Qingguo B (1996) Study on the combustion characteristics of mine fires. China Uni of Mining Technol 1: 49-56.
[22] McGrattan KB, Baum HR, Rehm RG (1998) Large eddy simulations of smoke movement. Fire Safety J 30(2): 161-178.