The effect of diffusion welding parameters on the microstructural characteristics and mechanical properties of dissimilar joint between 17-4PH steel and Ti6Al4V alloy using nickel interlayer

Authors

1 Faculty of Materials & Manufacturing Technologies, Malek Ashtar Univ. of Technology, Tehran, Iran

2 Faculty of Materials & Manufacturing Technologies, Malek Ashtar university of technology

Abstract

Diffusion welding is a solid-state welding process in which contacting surfaces to be joined under pressure at elevated temperatures with minimal macroscopic deformation. This study aimed to investigate the effect of diffusion welding parameters on the microstructural characteristics and mechanical properties of the dissimilar joint between 17-4PH steel and Ti6Al4V alloy using Ni interlayer with a thickness of 150 µm. The experiments were performed in a vacuum furnace at three temperatures of 900, 950 and 1050 °C for 45 and 60 min under the pressure of 5 MPa. The results indicate that at the temperatures of 900 and 950 °C, Ni3Ti, NiTi and NiTi2 intermetallic compounds are formed at the nickel-titanium interface, while with increasing the temperature to 1050 °C, NiTi2+Fe2Ti, β-Ti and β-Ti+α-Ti phases are formed at the interface. The minimum microhardness (562 HV) is achieved at the temperatures of 900 °C and time of 45 minutes and the maximum microhardness (700 HV) is obtained at the temperatures of 900 °C and time of 60 minutes. By increasing the time of diffusion welding from 45 to 60 minutes at two constant temperatures of 900 and 950 ° C, the shear strength increases %4.8 and %23.6, respectively. Also, by increasing the temperature of diffusion welding from 900 to 950 °C at fixed times of 45 and 60 minutes, the shear strength decreases %55.3 and %31.7, respectively. The best shear bond strength was 303 MPa, which was obtained at the temperature of 900 ° C and the time of 60 minutes.

Keywords

Main Subjects


[1] Lee HS, Yoon JH, Park CH, Ko YG, Shin DH, Lee CS (2007) A study on diffusion bonding of superplastic Ti–6Al–4V ELI grade. J Mater Process Technol 187-188: 526-529.
[2] Kundu S, Sam S (2013) Diffusion bonding of microduplex stainless steel and Ti alloy with and without interlayer: interface microstructure and strength properties. Metall Mater Trans A 45: 371-383.
[3] Kundu S, Thirunavukarasu G (2016) Structure and properties correlation of diffusion bonded joint of duplex stainless steel and Ti–6Al–4V with and without Ni–17Cr–9Fe alloy interlayer. Weld word 60: 793-811.
[4] Thirunavukarasu G (2014) Effect of bonding temperature on interfacial reaction and mechanical properties of diffusion-bonded joint between Ti-6Al-4V and 304 stainless steel using nickel as an intermediate material. Mater Sci 45: 2067- 2088.
[5] Muthupandi V, Muralimuhan CH (2014) Properties of friction welding titanium-stainless steel joints with a nickel interlayer. Procedia Mater Sci 5: 1120 -1129.
[6] Muralimuhan CH, Ashfaq M, Ashiri R, Muthupandi V,  Sivaprasad K (2016) Analysis and characterization of the tole of Ni interlayer in the friction welding of titanium and 304 austenitic stainless steel. Metall Mater Trans A 47: 347–359.
 [7] Pardal G, Ganguly S, Williams S, Vaja J (2015) Dissimilar metal joining of stainless steel and titanium using copper as transition metal. Procedia Mater Sci 5: 1150 – 1159.
[8] Kundu S (2011) Interface microstructure and strength properties of Ti6Al4V and microduplex stainless steel diffusion bonded joints. Mater Design 32: 2997-3003.
]9[ شجاعی زوارم ع (1391) جوشکاری غیرهمجنس آلیاژ حافظه دار نایتینول به Ti6Al4V با استفاده از لیزر ضربانی Nd:YAG و بررسی خواص اتصال. پایان نامه کارشناسی ارشد، دانشگاه تهران.
[10] Shiue RK, Wu SK, Chan CH, Huang CS (2006)  Infrared brazing of Ti6Al4V and 17-4PH stainless steel with a nickel barrier layer. Metall Mater Trans A 37: 2207–2217
[11] Ghosh M, Chatterjee S (2005) Effect of interface microstructure on the bond strength of the diffusion welded joints between titanium and stainless steel. Mater Charact 54: 327– 337
[12] He P, Zhang J, Zhou R, Li X (1999) Diffusion bonding technology of a titanium alloy to a stainless steel web with a Ni interlayer. Mater Charact 43: 287-292.
[13] Kundu S, Mishra B, Olson DL, Chatterjee S (2013) Interfacial reactions and strength properties of diffusion bonded joints of Ti64 alloy and 17-4PH stainless steel using nickel alloy interlayer. Mater Design 51: 714–722.
[14] Sam S, Kundu S, Chatterjee S (2012) Diffusion bonding of titanium alloy to micro-duplex stainless steel using a nickel alloy interlayer: Interface microstructure and strength properties. Mater Design 40: 237-244.
[15] Kundu S, Sam S, Mishra B, Chatterjee S (2014) Diffusion bonding of microduplex stainless steel and Ti alloy with and without interlayer: interface microstructure and strength properties. Metall Mater Trans A 45: 371–383.
 [16] Vigraman T (2021) Liquid-solid phase reaction products formation in the diffusion welded joints made between Ti-6Al-4V and AISI 304L with brass interlayer. Mater Today 42(2): 607-617.
[17] Kumar R, Balasubramanian M (2020) Analysis and comparison of diffusion bonded and friction welded Ti-6Al-4V and stainless steel joints with copper as interlayer. Mater Today 21(3): 1467-1473.
[18] Sabetghadam H, Zarei Hanzaki A, Araee A, Hadian A (2010) Diffusion bonding characteristics of 410 stainless steel/Cu with Ni interlayer. J Mater Sci Technol 26: 163-169.
[19] Ranjan Kumar R, Kumar Gupta R, Sarkar A, Prasad MJNV (2022) Vacuum diffusion bonding of α‑titanium alloy to stainless steel for aerospace applications: Interfacial microstructure and mechanical characteristics. Mater Charact 183: 111607.
[20] Atasoy E, Kahramanb N (2008) Diffusion bonding of commercially pure titanium to low carbon steel using a silver interlayer. Mater Charact 59: 1481-1490.
[21] Kundu S, Ghosh M, Laik A, Bhanumurthy K, Kale GB, Chatterjee S (2005) Diffusion bonding of commercially pure titanium to 304 stainless steel using copper interlayer.  Mater Sci Eng A 407:154–160.
[22] Surendar A, Lucas A, Abbas M, Rahim R, Salmani M (2019) Transient liquid phase bonding of stainless steel 316 L to Ti-6Al-4 V using Cu/Ni multi-interlayer: microstructure, mechanical properties, and fractography. Weld word 63: 1025-1032.
[23] Aleman B, Gutiérrez I, Urcola JJ  (1997) The use of kirkendall effect for calculating intrinsic diffusion coefficients in a 316L/Ti6242 diffusion bonded couple. Scripta Mater 36: 509-515.
 [24] Ghosh M, Samar D, Banarjee PS, Chatterjee S (2005) Variation in the reaction zone and its effects on the strength of diffusion bonded titanium–stainless steel couple. Mater Sci Eng A 390: 217-226.
[25] سبکتین ریزی م، رضوی س غ، مناجاتی زاده ح (1391) اتصال نوردی تیتانیوم به فولاد با استفاده از لایه میانی نیکل. مجله مواد نوین 3 (2): 67-76.
[26] Keyzer JD, Cacciamani G, Dupin N, Wollants P (2009) Thermodynamic modeling and optimization of the Fe-Ni-Ti system. Calphad 33: 109-123.