Experimental and numerical evaluation of energy absorption capacity of sandwich panel with polyurethane foam core reinforced with mineral pumice under explosive loading

Authors

1 Mechanical Engineering, Faculty of Engineering, Imam Hossein University, Tehran

2 Faculty of Mechanical Engineering, Imam Hussein University, Tehran, Iran

3 Department of Mechanical Engineering Imam Hossein University

Abstract

Sandwich structures with cores made of porous materials such as various types of metal and polymer foams are effective in absorbing the energy of explosive loads and due to their lightness can be used well in various industries. In this paper, deformation and energy absorption of sandwich panels with aluminum and steel face sheet and cores made of polyurethane foam, which is filled with two types of mineral pumice of different sizes (so-called chickpea size and almond size), under experimental free explosion loading. And numerical simulation has been studied with the help of Abaqus finite element software. In this study, the mechanical behavior of the core was first studied by making samples of polyurethane foam and mineral pumice under compression testing and the results were used in software behavioral models. After comparing the numerical results with the results of experimental test, and validating the results of numerical methods, numerical parametric studies were performed and the effect of pumice type, core thickness, face sheet material and thickness on the rate of deformation and energy absorption of sandwich panel components have been studied. The results show that the panel with a thicker back face sheet has a better performance in absorbing explosion energy. Also, as the strength or thickness of the face sheets increases, the role of the core in energy absorption decreases.

Keywords

Main Subjects


  • Zenkert D (1995) An Introduction to Sandwich Construction.EMAS Publ. Chameleon Press LTD, London, UK.

 

  • Levy A (1999) Shock waves interaction with granular materials. Powder Technol 103(3): p. 212-219.

 

  • Britan A, Ben-Dor G, Igra O, Shapiro H (2001) Shock waves attenuation by granular filters. Int J Multiphas Flow 27(4): 617-634.‏

 

  • Nesterenko V (2002) Shock (blast) mitigation by “soft” condensed matter. MRS Online Proceedings Library Archive.

 

  • Hangai Y, Kato H, Utsunomiya T, Kitahara S, Kuwazuru O, Yoshikawa N (2012) Effects of porosity and pore structure on compression properties of blowing-agent-free aluminum foams fabricated from aluminum alloy die castings. Mater Trans 53(8): 1515-1520.‏

 

  • Shim C, Yun N, Yu R, Byun D (2012) Mitigation of blast effects on protective structures by aluminum foam panels. Metals-Basel 2(2): 170-177.

 

  • Yazici M, Wright J, Bertin D, Shukla A (2014) Experimental and numerical study of foam filled corrugated core steel sandwich structures subjected to blast loading. Compos Struct 110: 98-109.

 

  • خندابی و همکارانش(1397). "مطالعه تجربی و عددی اثر ضخامت هسته و رویه در پانل‌های ساندویچی با هسته فوم و رویه‌های آلومینیومی تحت بارگذاری انفجاری." مکانیک سازه‌ها و شاره‌ها، دوره 8، شماره 3: صفحه 91-106.‎

 

  • Uday C, Varma C S T, Varma B N K, Ramya M, and Padmanabhan K  (2014) The Influence of Rigid Foam Density on the Flexural Properties of Glass Fabric/epoxypolyurethane Foam Sandwich Composites.  ChemTech 6)6( : 3314-3317.

 

  • Rotariu A N, Dima C, Trană E, Enache C, Timplaru F, Matache L C (2016) Uninstrumented measurement method for granular porous media blast mitigation assessment. Exp Techniques 40(3): 993-1003.‏

 

  • Zhou T, Zhang P, Xiao W, Liu J, Cheng Y (2019) Experimental investigation on the performance of PVC foam core sandwich panels under air blast loading. Compos Struct 226:‏

 

  • Hatami H, Hosseini M, Yasuri AK) 2019(. Perforation of thin aluminum targets under hypervelocity impact of aluminum spherical projectiles. Materials Evaluation. Mar 1;77(3):411-22.

 

  • Ghodsbin Jahromi A, Hatami H) 2018(. Numerical behavior study of expanded metal tube absorbers and effect of cross section size and multi-layer under low axial velocity impact loading. Amirkabir J of Mech Eng.;49:685-96.

 

  • Sun G, Wang E, Zhang J, Li S, Zhang Y, Li Q (2020) Experimental study on the dynamic responses of foam sandwich panels with different facesheets and core gradients subjected to blast impulse. Int J Impact Eng, 135: 103327.‏

 

  • Bloodworth-Race S, Critchley R, Hazael R, Peare A, Temple T (2021) Testing the blast response of foam inserts for helmets. Heliyon 7(5): e06990.

 

  • حاتم­پور و همکارانش(1399). "بررسی تجربی و تحلیل رگرسیونی تغییر شکل پلاستیک ساندویچ پنل‌های کامپوزیتی تقویت شده با فوم پلیمری تحت بارگذاری انفجاری." مهندسی مکانیک مدرس. ۲۰ (۱۱) :۲۶۷۸-۲۶۷۱.

 

  • سیاح بادخور و همکارانش(1399). "مطالعه عددی و بهینه‌سازی رفتار ساختارهای ساندویچی با هسته لانه‌زنبوری تحت بارگذاری انفجاری با استفاده از روش سطح پاسخ. مهندسی مکانیک." مجله مهندسی مکانیک امیرکبیر، سال پنجاه و دوم شماره 10.

 

  • پیمان،صفا. علی، ابراهیم­زاده.(1399) " بررسی عددی تأثیر هندسه بر میزان جذب انرژی پانل‌های ساندویچی تحت بارگذاری انفجاری." فصلنامه علمی علوم و فناوریهای پدافند نوین. دوره 11، شماره 4.

 

  • Rahmani M, Petrudi A M (2021) Experimental and numerical optimization study of shock wave damping in aluminum panel sandwich. Frattura ed Int Str 15(55): 88-109.‏

 

  • Rahmani M, Petrudi A M (2020) Optimization and experimental investigation of the ability of new material from aluminum casting on pumice particles to reduce shock wave. Periodica Polytech Mecا Eng 64(3): 224-232.‏

 

  • مسعود رحمانی, علیرضا نداف اسکوئی, حسین خدارحمی، روح اله حسینی (1399) بررسی تجربی و عددی میرایی موج انفجار با استفاده از پنل ساندویچی با هسته‌ی مواد دانه‌ای. مجله علمی- پژوهشی مواد پر انرژی، سال 15، شماره 1، پیاپی 45:ص 53-66.

 

  • فراهت, احمدی بروغنی, و سید یوسف(1396). "بررسی رفتار فوم کامپوزیتی A356/SiCp تحت بار ضربه ای با سرعت پائین."مکانیک سازه‌ها و شاره‌ها دوره 7، شماره 2 صفحه: 129-147.‎

 

  • Sahu S, Mondal D P, Goel M D, Ansari M Z (2018) Finite element analysis of AA1100 elasto-plastic behaviour using Johnson-Cook Mat Today: Proc, 5(2), 5349-5353.‏

 

  • Öztürk G (2010) Numerical and experimental investigation of perforation of ST-37 steel plates by oblique impact.(Master's thesis, Middle East Technical University).‏

 

  • Zhu F, Zhao L, Lu G, Wang Z (2008) Structural response and energy absorption of sandwich panels with an aluminium foam core under blast loading. Adv Struct Eng 11(5): 525-536.‏