Statistical analysis and multi-objective optimization of tungsten carbide alloy wirecut process using Taguchi method and genetic algorithm

Author

1- Department of Mechanical Engineering, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran

Abstract

Wire electrical discharge machining (WEDM) is one of the methods of producing tungsten carbide parts, which due to its poor machinability; optimal cutting with traditional methods is not possible. Material removal rate and surface roughness are the most important output indicators of the wire cut process. In this research, the Wire cut electrical discharge cutting process on tungsten carbide alloy has modeled and optimized. Mathematical modeling has used to establish an accurate relationship between input parameters and process outputs. In this regard, first, the necessary data collected by conducting an experiment, designed by the Design of experiments (DOE) by Taguchi method. Then the types of regression functions including linear and second order fitted for this data. In the next step, the validity of these models has been assessed using statistical hypothesis tests and analysis of variance. With the help of the proposed model, the parameters that have the greatest impact on the two outputs of material removal rate and surface roughness can be determined. After determining the appropriate models, the process optimization is performed using the genetic algorithm based on non-dominated sorting (NSGA-II) and the optimal combination of input parameters table is presented. Finally, a validation experiment performed with one of the compositions of the optimal table and the results of this experiment compared with the results obtained through optimization. Obtained results show good confirmation.

Keywords

Main Subjects


  • G., Jha S.K., Roy B.N., Dhakry, N. S.,2018, Electrical-Discharge Machining of Tungsten Carbide (WC) and its composites– A Review , Materials Today: Proceedings,Vol 5, Issue 11, Part 3, 201. 24760-24769.
  • P.K., 2005, Non-conventional Machining, Narosa Publishing House.
  • Pandey, P.C.; Shan, H.S. Modern Machining Process. Tata McGraw- Hill Publishing Company Ltd 1999, 84-113.
  • Wire EDM: Complete Guide to Wire-Cut Machine, Process, Uses and Advantages, 2021, https://finemetalworking.com/wire-edm.
  • Patil, N.G., Brahmankar, P.K., 2010, Some Studies into Wire Electro Discharge Machining of Alumina Particulate-Reinforced Aluminum Matrix Composites, ADV MATER RES-SWITZ, Vol. 48, 537-555.
  • Rao, P.S., Ramji, K., Satyanarayana, B., 2011, Effect of WEDM Condition on Surface Roughness: A Parametric Optimization Using Taguchi Method , Int J Eng Adv Technol, Vol. 6, 041-
  • Golshan, A., Gohari, S., Ayob, A., 2011, Computational Intelligence in Optimization of Wire Electrical Discharge Machining of Cold-Work Steel 2601, IJMME-IJENS, Vol. 11.
  • Mukherjee, R., Chakraborty, S., Samanta, S., 2012, Selection of wire electrical discharge machining process parameters using non-traditional optimization algorithms, Appl. Soft Comput. , 12(8):2506–2516.
  • Patela, A.J., Patel, S.P., 2013,Parametric Optimization of Wire Cut EDM Machine on Hard - Steel Alloy with Multiple Quality, IJAET/Vol. IV/ Issue II/April-June, 2013/74-77
  • Tahmasbi, Vahid, Majid Ghoreishi, Moein Taheri., 2016, Sensitivity analysis of material removal rate in dry electro-discharge machining process., Mme Modares 15.13: 382-386.‏
  • Ragunath .L, Vignesh .D, 2018, optimization of Wire-Cut EDM process parameters for SS304 using design of experiment, IJMPERD, ISSN (P): 2249-6890 Vol. 8, Issue 2, 709-714.
  • K, R.Prasanna, Milon D.Selvam, 2018, optimization of process parameters in wire Cut EDM of mild steel and stainless steel using robust design, ChemTech Research, Vol.11 No.01, pp 83-91.
  • S, Yadwinder Sharmab. Y, Jindalb. A, Singhb. S, 2019, Optimization of Process Parameters of Wire Cut EDM for Stainless Steel-316, International J. surf. eng. mater. adv. technol, Vol.9,No. 1.
  • El-Mahalawy, M. M., SAMUEL, M., Fouda, N., El-Bahloul, S. A., 2021, Investigating the Effect of Wire Electrical Discharge Machining Factors for Ductile Cast Iron (ASTM A536), IJIEPR, Vol. 32, No. 2: 1-10.
  • Kumar. A, Tarun Soot. T, Kumar. J, 2018, Optimisation of wire-cut EDM process parameter by Grey-based response surface methodology, J. Ind. Eng. Int. 14:821–829.
  • Bhaumik, M.and Maity, K.,  2020, Multi response optimization of EDM parameters using grey relational analysis (GRA) for Ti-5Al-2.5Sn titanium alloy",  J. Eng, https://doi.org/ 10.1108/ WJE -06-2020-0210.
  • Phan-NguyenHuu, 2020, Multi-objective optimization in titanium powder mixed electrical discharge machining process parameters for die steels, Alex. Eng. J., doi.org/10.1016/ j.aej.2020.07.012.
  • R, Vora. J, Patel. V, Lopez de Lacalle L. N., Parikh D. M., 2020,  Effect of WEDM Process Parameters on Surface Morphology of Nitinol Shape Memory Alloy. MATEG9, 13, 4943; doi:10.3390/ma13214943.
  • Alduroobi, A.A.A., Ubaid, A.M., Tawfiq, M.A. et al., 2020, Wire EDM process optimization for machining AISI 1045 steel by use of Taguchi method, artificial neural network and analysis of variances. Int. J. Syst. Assur. https: //doi.org/10.1007/s13198-020-00990-z.
  • Iqbal, M. W.,  , S.A.,  Khan. Y. A., Muhammad, T., 2021, Analysis and Multi-Objective Optimization of Wire Cut Process Parameters for Efficient Cutting of Tapered Carbon Steels Using Wire EDM, J. Eng. Res., DOI : 10.36909/jer.11965.
  • Tarng, Y.S., Ma, S.C., Chung, L.K., 1995, Determination Of optimal cutting parameters in wire electrical discharge machining, Int. J. Mach. Tools Manuf., Vol. 35, 1693-1701.
  • Vahdati, M. (2020). Statistical analysis and optimization of parameters affecting the hardness of butt joint cross-section of Al7075 produced by FSW and SFSW using RSM and desirability approach. J. Solid Mech., 10(4), 165-180. doi: 10.22044/jsfm.2020.9476.3136.
  • Vahdati, M., Moradi, M. (2021). Statistical analysis and optimization of tensile strength of Al7075 butt joint produced by friction stir welding and submerged friction stir welding via response surface methodology and desirability approach. AJME, 53(Issue 4 (Special Issue)), 18-18. doi: 10.22060/mej.2020.18104.6735.
  • Ross, P.J., 1988, Taguchi techniques for quality engineering, McGraw-HillBook Company, New York.
  • Negarestani, A., Abolbashari, M. (2017). Optimization of End milling process for minimizing surface roughness with combined artificial Neural Network and Genetic Algorithm. J. Solid Mech., 7(2), 81-91. doi: 10.22044 /jsfm. 4559.2174.
  • Rostamiyan, Y. (2017). Investigation and optimization of the mechanical properties of epoxy based Hybrid Nano-composites reinforced by carbon-fiber: Using Taguchi method. J. Solid Mech., 7(3), 97-112. doi: 10.22044 /jsfm.2017.5623.2386.
  • Roy, R.K., 1990, A primer on Taguchi method, Van Nostrand Reinhold, NewYork , 48.
  • Bradley, N., 2007, The Response Surface Methodology, Department of Mathematical Science Indiana University of South Bend.
  • Taheri, M., and Tahmasbi V., 2016, The effect of various parameters on material removal rate in brass drilling operations using statistical sensitivity analysis, IJME, Vol 3:60-65.
  • Deb, A. Pratap, S. Agarwal and T. Meyarivan, "A fast and elitist multiobjective genetic algorithm: NSGA-II," IEEE Trans. Evol. Comput., vol. 6, no. 2, pp. 182-197, April 2002, doi: 10.1109/4235.996017.
  • Boothroyd,, Knight, W.A., 1989, Fundamentals of Metal Machining and Machine Tools, Second Edition, Marcel Dekker.
  • Guitrau, E.B., 1997, The EDM Handbook, Hanser Gardner Publications, Cincinnati.
  • Mahto, D., & Singh, N. (2017). Experimental Study of Process Parameters through Dissimilar Form of Electrodes in EDM Machining. SSRN. DOI:10.2139/SSRN.2947443
  • MatWeb, 2014, Tungsten Carbide, WC, www.matweb.com.