[1] Weisbord L, Paros JM (1965) How to design flexure hinges. Machine Design, 27(3), 151-157.
[2] Midha A, Howell L. L., & Norton, T. W. (2000). Limit positions of compliant mechanisms using the pseudo-rigid-body model concept. Mech. Mach. Theory, 35(1), 99-115.
[3] Howell LL (2013) Compliant mechanisms. In 21st century kinematics (pp. 189-216). Springer, London.
[4] Howell LL, Midha A (1996) A loop-closure theory for the analysis and synthesis of compliant mechanisms, ASME. J. Mech. Des., 118(1): 121–125.
[5] Farhadi Machekposhti, D., Tolou, N., & Herder, J. L. (2012). The scope for a compliant homokinetic coupling based on review of compliant joints and rigid-body constant velocity universal joints. In International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (Vol. 45035, pp. 379-392). ASME.
[6] Lobontiu N (2002) Compliant mechanisms: design of flexure hinges. CRC press.
[7] Moon YM, Trease BP, Kota S (2002) Design of large-displacement compliant joints. In International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (Vol. 36533, pp. 65-76). ASME.
[8] Zhang ZJ, Yuan YB (2006) Research on a novel flexure hinge. In Journal of Physics: Conference Series (Vol. 48, No. 1, p. 053). IOP Publishing.
[9] Tian Y, Shirinzadeh B, Zhang D (2010) Closed-form compliance equations of filleted V-shaped flexure hinges for compliant mechanism design. Precis. Eng., 34(3), 408-418.
[10] Pei X, Yu J (2011) ADLIF: a new large-displacement beam-based flexure joint. Mech. Sci., 2(2), 183-188.
[11] Rommers J, vanderWijk V, Herder JL (2021) A new type of spherical flexure joint based on tetrahedron elements. Precis. Eng., 71, 130-140.
[12] Naves M, Aarts RGKM, Brouwer, DM (2019) Large stroke high off-axis stiffness three degree of freedom spherical flexure joint. Precis. Eng., 56, 422-431.
[13] Gerez L, Gao G, Liarokapis M (2020) Laminar Jamming Flexure Joints for the Development of Variable Stiffness Robot Grippers and Hands. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 8709-8715). IEEE.
[14] Pavlović NT, Pavlović ND (2005) Mobility of the compliant joints and compliant mechanisms. Theor. Appl. Mech., 32(4), 341-357.
[15] Parlaktaş V, Tanık E (2014) Single piece compliant spatial slider–crank mechanism. Mech. Mach. Theory, 81, 1-10.
[16] Linß S, Gräser P, Henning S, Harfensteller F, Theska R, Zentner L (2019) Synthesis method for compliant mechanisms of high-precision and large-stroke by use of individually shaped power function flexure hinges. In IFToMM World Congress on Mechanism and Machine Science (pp. 1569-1578). Springer, Cham.
[17] Hu J, Wen T, He J (2020) Dynamics of compliant mechanisms using transfer matrix method. Int. J. Precis. Eng. Manuf., 21(11), 2173-2189.
[18] Lankarani HM, Nikravesh PE (1989) A contact force model with hysteresis damping for impact analysis of multibody systems. In International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (Vol. 3691, pp. 45-51). ASME.
[19] Flores P (2010) A parametric study on the dynamic response of planar multibody systems with multiple clearance joints. Nonlinear Dyn., 61(4), 633-653.
[20] Bai ZF, Zhao Y (2012) Dynamic behaviour analysis of planar mechanical systems with clearance in revolute joints using a new hybrid contact force model. Int. J. Mech. Sci., 54(1), 190-205.
[21] Farajtabar M, Daniali HM, Varedi SM (2017) Pick and place trajectory planning of planar 3-RRR parallel manipulator in the presence of joint clearance. Robotica, 35(2), 241-253.
[22] Parenti-Castelli V, Venanzi S (2005) Clearance influence analysis on mechanisms. Mech. Mach. Theory, 40(12), 1316-1329.
[23] Sardashti A, Daniali HM, Varedi SM (2013) Optimal free-defect function generation synthesis of four-bar linkage with joint clearance using PSO algorithm. J. Sci. Eng., 1(1), 67-78.
[24] Varedi SM, Daniali HM, Dardel M, Fathi A (2015) Optimal dynamic design of a planar slider-crank mechanism with a joint clearance. Mech. Mach. Theory, 86, 191-200.
[25] Varedi SM, Daniali HM, Dardel M (2015) Dynamic synthesis of a planar slider–crank mechanism with clearances. Nonlinear Dyn., 79(2), 1587-1600.
[26] Varedi-Koulaei SM, Daniali HM, Farajtabar M, Fathi B, Shafiee-Ashtiani M (2016) Reducing the undesirable effects of joints clearance on the behavior of the planar 3-RRR parallel manipulators. Nonlinear Dyn., 86(2), 1007-1022.
[27] Yaqubi S, Dardel M, Daniali HM, Ghasemi MH (2016) Modeling and control of crank–slider mechanism with multiple clearance joints. Multibody Syst. Dyn., 36(2), 143-167.
[28] Koulaei SMV, Moahmmadi HR, Dardel M, Fathi A (2014) Optimal Compliant Design of a Planar Linkage for Decreasing the Undesirable Effects of Joint Clearance. Modares Mech. Eng., 14(5), 55-62.
[29] Erkaya S, Doğan S (2015) A comparative analysis of joint clearance effects on articulated and partly compliant mechanisms. Nonlinear Dyn., 81(1), 323-341.
[30] Erkaya S, Doğan S, Ulus Ş (2015) Effects of joint clearance on the dynamics of a partly compliant mechanism: numerical and experimental studies. Mech. Mach. Theory, 88, 125-140.
[31] Erkaya S, Doğan S, Şefkatlıoğlu E (2016) Analysis of the joint clearance effects on a compliant spatial mechanism. Mech. Mach. Theory, 104, 255-273.
]32[ حیدری ح و مالمیرنسب ع (1396)، کاهش ارتعاشات ربات دو لینکی انعطافپذیز با استفاده از مبدل پیزوالکتریک در طی مسیر مشخص، مکانیک سازهها و شارهها، دوره 7، شماره 3، صفحه 185-197.
]33[ غلامی ا و تورجیزاده ح (1398)، مدلسازی و کنترل ربات 3PRS با استفاده از روش لاگرانژ، مکانیک سازهها و شارهها، دوره 9، شماره 3، صفحه 25-38.