Experimental Study of LEX Angle Effect on Vortical Flow Over the Diamond Wing with Airfoil-Shaped Section by Using Hot-wire and Five-hole Probe

Authors

1 PhD Student

2 Professor

Abstract

In this research, the effects of LEX angle on flow pattern over the diamond wing by using hot-wire and five-hole probe are investigated. The pressure coefficient tests over the wing at three different angles of attack respectively 5, 10 and 15 degrees and on two section was conducted by five hole probe. Also turbulence intensity measurements were conducted at three sections for 10 degree angle of attack by using hot wire anemometer. Experimental tests were conducted in a closed circuit wind tunnel with acceptable flow quality at the velocity of 12.5 (m/s) equal to 192500 Reynolds number. At a constant angle of attack with a downward movement the flow; the vortex diameter formed due to the Leading edge of the wing. Therfore, the LEX vortex increased which has led to growing pressure suction on the wing. Amplified suction pressure at the center of the LEX vortex core and the leading edge vortex have carried the two vortices closer together. Thus, the larger the vortex core lead to higher turbulence intensity by moving to downstream. Frequency analysis near the center of the leading edge vortex and Lex vortex showed that at constant section over the wing, the turbulence intensity near vortex core exposed, increasing turbulence intensity that caused to rise the amplitude spectra of fluctuation. Furthermore, frequency analysis indicate that the maximum domain of power spectra increases for LEX angle of 16 degree with rising of angles of attack.

Keywords


[1] Lu Sh, Huang J, Song L, Yi M (2020) A study on zoning coating method of absorbing materials for stealth aircraft. Journal Pre-proof (19):114-131.
[2] Sohn M, Jung J, Lee J (2019) Stealth aircraft technology and future air warfare. Journal of the KIMST 22(1): 81-92.
[3] Adamson A, Snyder M (2017) The challenges of fifth generation transformation. The RUSI Journal 162(4): 1-7.
[4] Sahin B, Tasci M, Karasu I, Akilli H (2017) Flow structures in end-view plane of slender delta wing. Experimental Fluid Mechanics 143: 2-11.
[5] Çeli A, Yavuz M (2016) Effect of edge modifications on flow structure of low swept delta wing. AIAA JOURNAL 54(5): 1789-1798.
[6] Giuni M, Green R (2013) Vortex formation on squared and rounded tip. Aerospace Science and Technology 29(1): 191-199.
[7] Shen L, Wen Ch (2018) Oscillations of leading-edge vortex breakdown locations over a delta wing. AIAA JOURNAL 56(6).
[8] Ekaterinaris J, Schifft L (1994) Numerical simulation of incidence and sweep effects on delta wing vortex breakdown. JOURNAL OF AIRCRAFT 31(1): 1043-1049.
]9[ غفوری­ورزنه م، دهقان­منشادی م، یوسفی­فر ف، بزاززاده م (1394) بررسی تجربی تأثیر عدد رینولدز بر روی ساختار جریان پشت بال دلتا با مقطع ایرفویل شکل. یافته­های نوین در صنعت هوافضا، تابستان 1394.
[10] Yaniktepe B, Rockwell D (2005) Flow structure on diamond and lambda planforms trailing-edge region. AIAA JOURNAL 43(7): 1490-1500.
[11] Pfnür S, Oppelt S, Breitsamter Ch (2019) Yaw control efficiency analysis for a diamond wing configuration with outboard split flaps. CEAS Aeronautical Journal 10: 645-663.
[12] Karasu I, Sahin B, Tasci M (2019) Effect of yaw angles on aerodynamics of a slender delta wing. Journal of Aerospace Engineering 32(5).
[13] Hitzel S, Boelens O, Rooij M (2016) Vortex development on the AVT-183 diamond wing configuration – numerical and experimental findings. Aerospace Science and Technology 57: 90-102.
]14[ دهقان­منشادی م، هاشمی م، ایل­بیگی م (1398) بررسی اثر تغییر زاویه­حمله بر ساختار جریان بال الماسی شکل با لبه­حمله تیز و مجهز به لکس با آشکارسازی جریان. مجله علمی پژوهشی مکانیک سازه­ها و شاره­ها دوره 9، شماره 6: 265-275.
[15] Kwiek A, Figat M (2016) LEX and wing tip plates
interaction on the Rocket Plane in tailless configuration. The Aeronautical Journal 120(1224): 255-270.
[16] Nikolic V (2006) Planform effects on wing-movable tip strake aerodynamic performance. American Institute of Aeronautics and Astronautics 27(7705).
[17] Sohn M (2010) Effect of apex strake incidence-angle on the vortex development and interaction of a double-delta wing. Experiments in Fluids 48: 565-575.
]18[ شرفی ا، رمضانی­زاده م، احمد­خواه ا (1395) مطالعه عددی اثرات موقعیت­های طولی و عمودی کانارد بر توزیع فشار و ضرایب آیرودینامیکی یک مدل بال هواپیمای مانورپذیر. مکانیک سازه­ها و شاره­ها، دوره6، شماره4، 301-316.
[19] GUERAICHE D, POPOV S (2018) Improving the aerodynamics of a transport aircraft wing using a delta platform wingtip leading edge extension. Сivil Aviation High Technologies 21(1): 124-136.
[20] Dehghan Manshadi M, Eilbeigi M, Sobhani M (2016) Chinese Journal of Aeronautics 29(5): 1196-1204.
[21] Daniels R (2017) Design fabrication and calibration of a five hole pressure probe for measurement of three dimensional flows. GRD Journals 2(4): 102-114.
[22] Manshadi M, Esfeh M (2016) Experimental investigation of flowfield over an iced aerofoil. The Aeronautical Journal 120(1227): 735-7.