Assesing whipping vibration on damage floating life of Catamaran using one way fluid-structure interaction method

Authors

1 Mechanical Engineering Department, Imam Hossein comprehensive University

2 Shahid Beheshti Univ., Tehran, Iran

Abstract

The knowledge of applied loads on the floating structure is necessary from the beginning of design procedure. One of the most important loads which is applied on the floating structure is the impact loads due to the rapid impact of the ship with the water surface. This type of load, known as slamming load which can increase the yield level and althought cuases high-amplitude vibrations in the struture, which are also known as whipping vibrations. The purpose of this paper is to investigate slamming loads and whipping vibrations in catamarans. In this paper, using computational fluid dynamic method (CFD), hydrodynamic loads and impacts on the vessel are investigated. Then, using the one-way fluid-structure interaction method, the effects of wave slaming impact on the catamaran is investigated and also the resulting vibrations is be investigated. Then, using the Miner-Palmgren cumulative life estimation method and the rainfall count cycle method, the effect of this type of vibration on the failure and destruction of the floating structure is investigated. The results illustrate that the whipping vibration have a significant effect on the life of catamaran.

Keywords


[1] Okumoto Y, Takeda Y, Mano M, Okada T (2009) Design of ship hull structures: A practical guide for engineers. SSBM.
[2] AlaviMehr J, Lavroff J, Davis MR, Holloway DS, Thomas G (2017) An experimental investigation of ride control algorithms for high-speed catamarans Part 1: Reduction of ship motions. J Ship Res 61(1): 35-49.
[3] Lavroff J, Davis M, Holloway D, Thomas G (2009) The vibratory response of high-speed catamarans to slamming investigated by hydroelastic segmented model experiments. Int J Marit Eng 151(4): 1-13.
[4] Thomas G, Davis M, Holloway D (2003) The whipping vibration of large high speed catamarans. Transactions of the Royal Institution of Naval Architects Part A, Int J Marit Eng 145: 289-304.
[5] Thomas G (2011) Slam events of high-speed catamarans in irregular waves. J Mar Sci Technol 16(1): 8-21.
[6] Townsend P, Suárez-Bermejo JC, Horcajo E, PazPinilla-Cea (2018) Reduction of slamming damage in the hull of high-speed crafts manufactured from composite materials using viscoelastic layers. Ocean Eng 159: 253-267.
[7] Townsend P, Suárez-Bermejo JC, Sanz-Horcajo E, PazPinilla-Cea (2018) Reduction of slamming damage in the hull of high-speed crafts manufactured from composite materials using viscoelastic layers. Ocean Eng 159: 253-267.
[9] Storhaug G (2007) Experimental investigation of wave induced vibrations and their effect on the fatigue loading of ships. NTNU.
[10] Barhoumi M, Storhaug G (2014) Assessment of whipping and springing on a large container vessel. Int J Nav Archit 6 (2): 442-458.
[11] Drummen I, Holtman M (2014) Benchmark study of slamming and whipping. Ocean Eng86: 3-10.
[12] Hirdaris S (2009) Hydroelasticity of ships: recent advances and future trends. P I Mech Eng M-J Eng 223(3): 305-330.
[13] Storhaug G (2014) The measured contribution of whipping and springing on the fatigue and extreme loading of container vessels. Int J Nav Archit Ocean Eng 46: 1096-1110.
[14] Storhaug G, Malenica S, Choi BK, Zhu S (2010) Consequence of whipping and springing on fatigue and extreme loading for a 13000TEU container vessel based on model tests. Proc. PRADS-2010, COPPE/UFRJ, Rio de Janeiro, Brazil, 1200-1209.
[15] Kim H, Kim Y, Yuck RH, Lee OY (2015) Comparison of slamming and whipping loads by fully coupled hydroelastic analysis and experimental measurement. J Fluids Struct 52: 145-152.
[16] Henry JR (1970) Slammig of ships: A critical review of the current state of knowledge ship structure committee, Technical paper.
[17] Piro D, Maki K (2011) Hydroelastic  wedge  entry  and  exit. Proceedings of the 11th International Conference on FAST2011.
[18] Tveitnes T, Fairlie-Clark A, Varyani K (2008) An experimental investigation into the constant ve-locity water entry of wedge-shaped sections. Ocean Eng 35(14-15): 1463-1478.
[19] Tassin A, Korobkin A, Cooker M (2012) Modelling  of  the  oblique  impact  of  an  elongated body  by  2D+ t  approach. 27th Int  Wkshp on  Water  Waves  &  Floating  Bodies.
[20]  Tassin A, Piro D, Korobkin A, Maki K, Cooker M (2013) Two-dimensional  water  entry and exit of a body whose shape varies in time. J Fluids Struct 28: 211-231.
[21] Piro D, Maki KJK (2013) Hydroelastic analysis of bodies that enter and exit water. J Fluids Struct 37: 60-74.
[22] Andersen I, Jensen JJ (2014) Measurements  in  a  containership  of  wave  induced  hull girder stresses in excess of design values. Mar Struct 37: 54-85.
[23] Wang S, Soares CG (2013) Slam induced loads on bow flared sections with various roll angles. Ocean Eng 67: 45-57.
[24] Koo J, Kim B, Jang K, Suh Y, Bigot F (2012) Fatigue assessment of the 18,000TEUcontainer  vessel  considering  the  effect  of  springing, 23rdInt.  ISOPE.
[25] سیف م، تابش‌پور م­ر، سلیمانی ا، کرمی م، ملک‌محمدی ج (1399) بررسی فرم­های مقاطع مختلف دماغه مرکزی در میزان بیشینه شتاب در مسئله سقوط آزاد در شناور هارث. فصلنامه دریا فنون 60-46 :(2)7.
[26] شمسی ر (1387) بررسی استحکام طولی شناور تندرو تحت تاثیر فشار اسلمینگ. دهمین سمپوزیوم صنایع دریایی.
[27] زارعی م­ر، محمدی م (1390) بررسی اسلمینگ بر روی یک شناور کامپوزیت کاتاماران به روش المان محدود. سیزدهمین همایش صنایع دریایی.
[28] نجفی م­ر (1397) بررسی اسلمینگ و ویپینگ در سازه شناور. پنجمین کنفرانس بین‌المللی پژوهش‌های کاربردی در مهندسی برق مکانیک مکاترونیک.
[29] Park J (2006) Time domain simulation of hydroelastic response of ships in large amplitude waves. Phd Thesis, University Southampton.
[30] Jensen JJ (2001) Load and global response of ships. Amsterdam Elsevier.
[31] Najmeh M (2016) Estimation of waves and ship responses using onboard measurements. Phd Thesis, Technical University of Denmark.
[32] Das SK,  Baghfalaki M (2014) Mathematical modelling of response amplitude operator for roll motion of a floating body: Analysis in frequency domain with numerical validation. J Marine Sci Appl 13: 143-157
[33]  https://www.aqwa.com.au/
[34] https: //www.ansys.com/ products/ fluids/ ansys - fluent
[35] Mathews, Nandakumar G (2013) Fatigue life estimation of ship structure. Int J Sci Eng Res 4(5).