[1] Okumoto Y, Takeda Y, Mano M, Okada T (2009) Design of ship hull structures: A practical guide for engineers. SSBM.
[2] AlaviMehr J, Lavroff J, Davis MR, Holloway DS, Thomas G (2017) An experimental investigation of ride control algorithms for high-speed catamarans Part 1: Reduction of ship motions. J Ship Res 61(1): 35-49.
[3] Lavroff J, Davis M, Holloway D, Thomas G (2009) The vibratory response of high-speed catamarans to slamming investigated by hydroelastic segmented model experiments. Int J Marit Eng 151(4): 1-13.
[4] Thomas G, Davis M, Holloway D (2003) The whipping vibration of large high speed catamarans. Transactions of the Royal Institution of Naval Architects Part A, Int J Marit Eng 145: 289-304.
[5] Thomas G (2011) Slam events of high-speed catamarans in irregular waves. J Mar Sci Technol 16(1): 8-21.
[9] Storhaug G (2007) Experimental investigation of wave induced vibrations and their effect on the fatigue loading of ships. NTNU.
[10]
Barhoumi M, Storhaug G (2014) Assessment of whipping and springing on a large container vessel. Int J Nav Archit 6 (2): 442-458.
[11] Drummen I, Holtman M (2014) Benchmark study of slamming and whipping.
Ocean Eng86: 3-10.
[12] Hirdaris S (2009) Hydroelasticity of ships: recent advances and future trends. P I Mech Eng M-J Eng 223(3): 305-330.
[13] Storhaug G (2014) The measured contribution of whipping and springing on the fatigue and extreme loading of container vessels. Int J Nav Archit Ocean Eng 46: 1096-1110.
[14] Storhaug G, Malenica S, Choi BK, Zhu S (2010) Consequence of whipping and springing on fatigue and extreme loading for a 13000TEU container vessel based on model tests. Proc. PRADS-2010, COPPE/UFRJ, Rio de Janeiro, Brazil, 1200-1209.
[15] Kim H, Kim Y, Yuck RH, Lee OY (2015) Comparison of slamming and whipping loads by fully coupled hydroelastic analysis and experimental measurement. J Fluids Struct 52: 145-152.
[16] Henry JR (1970) Slammig of ships: A critical review of the current state of knowledge ship structure committee, Technical paper.
[17] Piro D, Maki K (2011) Hydroelastic wedge entry and exit. Proceedings of the 11th International Conference on FAST2011.
[18] Tveitnes T, Fairlie-Clark A, Varyani K (2008) An experimental investigation into the constant ve-locity water entry of wedge-shaped sections. Ocean Eng 35(14-15): 1463-1478.
[19] Tassin A, Korobkin A, Cooker M (2012) Modelling of the oblique impact of an elongated body by 2D+ t approach. 27th Int Wkshp on Water Waves & Floating Bodies.
[20] Tassin A, Piro D, Korobkin A, Maki K, Cooker M (2013) Two-dimensional water entry and exit of a body whose shape varies in time. J Fluids Struct 28: 211-231.
[21] Piro D, Maki KJK (2013) Hydroelastic analysis of bodies that enter and exit water. J Fluids Struct 37: 60-74.
[22] Andersen I, Jensen JJ (2014) Measurements in a containership of wave induced hull girder stresses in excess of design values. Mar Struct 37: 54-85.
[23] Wang S, Soares CG (2013) Slam induced loads on bow flared sections with various roll angles. Ocean Eng 67: 45-57.
[24] Koo J, Kim B, Jang K, Suh Y, Bigot F (2012) Fatigue assessment of the 18,000TEUcontainer vessel considering the effect of springing, 23rdInt. ISOPE.
[25] سیف م، تابشپور مر، سلیمانی ا، کرمی م، ملکمحمدی ج (1399) بررسی فرمهای مقاطع مختلف دماغه مرکزی در میزان بیشینه شتاب در مسئله سقوط آزاد در شناور هارث. فصلنامه دریا فنون 60-46 :(2)7.
[26] شمسی ر (1387) بررسی استحکام طولی شناور تندرو تحت تاثیر فشار اسلمینگ. دهمین سمپوزیوم صنایع دریایی.
[27] زارعی مر، محمدی م (1390) بررسی اسلمینگ بر روی یک شناور کامپوزیت کاتاماران به روش المان محدود. سیزدهمین همایش صنایع دریایی.
[28] نجفی مر (1397) بررسی اسلمینگ و ویپینگ در سازه شناور. پنجمین کنفرانس بینالمللی پژوهشهای کاربردی در مهندسی برق مکانیک مکاترونیک.
[29] Park J (2006) Time domain simulation of hydroelastic response of ships in large amplitude waves. Phd Thesis, University Southampton.
[30] Jensen JJ (2001) Load and global response of ships. Amsterdam Elsevier.
[31] Najmeh M (2016) Estimation of waves and ship responses using onboard measurements. Phd Thesis, Technical University of Denmark.
[32] Das SK, Baghfalaki M (2014) Mathematical modelling of response amplitude operator for roll motion of a floating body: Analysis in frequency domain with numerical validation. J Marine Sci Appl 13: 143-157
[33] https://www.aqwa.com.au/
[34] https: //www.ansys.com/ products/ fluids/ ansys - fluent
[35] Mathews, Nandakumar G (2013) Fatigue life estimation of ship structure. Int J Sci Eng Res 4(5).