Effect of state feedback controller on dynamic behavior of a rotor supported by active magnetic bearings

Authors

Mechanical Engineering Group, Golpayegan College of Engineering, Isfahan University of Technology, Isfahan, Iran

Abstract

Dynamic behavior of a horizontally supported Jeffcott-rotor system vial four electromagnetics poles is investigated. The magnetic force has a highly nonlinear relation to the control current and the air gap in the active magnetic bearing. The nonlinearities due to the centrifugal force, electromagnetic force, and the rotor weight are considered in the rotor model. The lateral oscillation of the rotor is controlled using a state feedback control system. The vibration of the rotor is modeled by a second order nonlinear ordinary differential equations with quadratic and cubic nonlinearities. The oscillatory characteristics of the considered system is investigated using the multiple time scales perturbation method assuming weak nonlinearity and soft excitation. Numerical simulations are carried out to validate the accuracy of the analytical results. The results show high efficiency of the applied controller velocity gain in forcing the considered nonlinear system to respond as a linear one with a single periodic attractor.

Keywords


[1] حیدری م، یوسفوند ح (1394) مدل سازی و کنترل یاتاقان مغناطیسی فعال به روش فیدبک حالت. همایش یافته­های نوین در هوافضا و علوم وابسته.
[2] دشتی رحمت آبادی ا، دوست‌حسینی ر، بنی سعید ن (1394) مدل‌سازی دینامیکی سیستم روتور یک یاتاقان مغناطیسی فعال، بررسی پارامترهای موثر بر عملکرد و طراحی سیستم کنترل آن. پایان نامه کارشناسی ارشد.
[3] Gohari M (2017) Integration intelligent estimators to disturbance observer to enhance robustness of active magnetic bearing controller. Int J Control 7(2): 25-31.
[4] Saeed NA, Kamel M (2016) Nonlinear PD-controller to suppress the nonlinear oscillations of horizontally supported Jeffcott-rotor system. Int J Non Lin Mech 87: 109-124.
[5] Saeed NA, Kamel M (2017) Active magnetic bearing-based tuned controller to suppress lateral vibrations of a nonlinear Jeffcott-rotor system. Nonlinear Dynam. 90 (1): 457-478.
[6] Saeed NA, El-Ganaini WA (2017b) Utilizing time-delays to quench the nonlinear vibrations of a two-degree-of-freedom system. Meccanica 52(11-12), 2969-2990.
[7] Yang D, Gao X, Cui E and Ma Z (2020) State-constraints adaptive backstepping control for active magnetic bearings with parameters nonstationarities and uncertainties. IEEE T Ind Electron 68(10): 9822-9831.
[8] Wang X, Zhang Y and Gao P (2020) Design and analysis of second-order sliding mode controller for active magnetic bearing. Energies 13(22): 5965.
[9] Yaseen HMS, Siffat SA, Ahmad I and Malik AS (2021) Nonlinear adaptive control of magnetic levitation system using terminal sliding mode and integral backstepping sliding mode controllers. ISA T.
[10] Molina LMC, Bonfitto A and Galluzzi R (2021) Offset-Free model predictive control for a cone-shaped active magnetic bearing system. Mechatronics 78: 102612.
[11] Morsi A, Abbas HS, Ahmed SM and Mohamed AM (2021) model predictive control based on linear parameter-varying models of active magnetic bearing systems. IEEE Access 9: 23633-23647.
[12] Carmo Carvalho F, Fernandes de Oliveira MV, Lara-Molina FA, Cavalini Jr AA, Steffen JrV (2021) Fuzzy robust control applied to rotor supported by active magnetic bearing. J Vib Control 27(7-8): 912-923.
[13] Couzon PY and Der Hagopian J (2007) Neuro-fuzzy active control of rotor suspended on active magnetic bearing. J Vib Control 13(4): 365-384.
[14] Saeed NA, Awwad EM, El-Meligy MA and Nasr EA (2021) Sensitivity analysis and vibration control of asymmetric nonlinear rotating shaft system utilizing 4-pole AMBs as an actuator. Eur J Mech A-Solid 86: 104145.
[15] Iwatsubo T, Tsujiuchi Y and Inoue T (1986) Vibration of asymmetric rotor supported by oil film bearings. Ingenieur-Archiv 56(1): 1-15.
[16] Halminen O, Kärkkäinen A, Sopanen J and Mikkola A (2015) Active magnetic bearing-supported rotor with misaligned cageless backup bearings: A dropdown event simulation model. Mech Syst Signal PR 50: 692-705.
[17] Yu TJ, Zhou S, Yang XD and Zhang W (2018) Global dynamics of a flexible asymmetrical rotor. Nonlinear Dynam 91(2): 1041-1060.
[18] Saeed NA, Eissa M and El-Ganini WA (2013) Nonlinear oscillations of rotor active magnetic bearings system. Nonlinear Dynam 74(1): 1-20.
[19] Gao R, Luo G and Yan CX (2014) Dynamic modeling and analysis of active magnetic bearings. Appl Mech Mater 494: 685-688.
[20] Nayfeh AH (2011) Introduction to perturbation techniques. John Wiley & Sons.