Drone Propeller Analysis by Blade Element Momentum and Numerical Methodes for Autonmus Submarine Veichle

Authors

Expert on Surface Vessel Design / Northwestern Institute of Science and Technology / Malek Ashtar University of Technology

Abstract

Nowdays, the use of Autonomous Submarines has increased for Various applications such as, Scientific, military and commercial research. In this paper, a drone type propeller for autonomous vehicle is examined from various aspects such as: performance, product material and hydroacoustics. Hydrodynamic and hydroacoustic results are validated. Numerical uncertainty was calculated and estimated. To select propeller, the coupling of Blade Element Momentum Theory (BEMT) method and Computational Fluid Dynamics (CFD) solver have been used. In the following, by the finite element method, several different materials for product the propeller with stress and minimum displacement of the blade tip constraint have been investigated. In order to examine the propeller from different aspects, a flowchart was proposed. The propellers were analyzed in terms of performance and strength and the displacement criterion for the blade tip was considered. In the last section, the hydroacostic results are validated and Sound pressure Level (SPL) is estimated and compared.

Keywords


[1] Mahmuddin F (2017) Rotor blade performance analysis with blade element momentum theory. Energy Procedia  105: 1123-1129.
[2] MacNeill R, Verstraete D (2017) Blade element momentum theory extended to model low Reynolds number propeller performance. The Aeronaut Journal 121: 835-857.
[3] Phillips A. B, Turnock S. R, and Furlong M (2009) Evaluation of manoeuvring coefficients of a self-propelled ship using a blade element momentum propeller model coupled to a Reynolds averaged Navier Stokes flow solver. Ocean Eng 36: 1217-1225.
[4] Rwigema MK (2010) Propeller blade element momentum theory with vortex wake deflection. in 27th ICOS  p. 2.3.
[5] Benini E (2004) Significance of blade element theory in performance prediction of marine propellers. Ocean Eng 31: 957-974.
[6] Gur O, and Rosen A (2008) Comparison between blade-element models of propellers. Aeronaut Journal  112: 689-704.
[7] Bohorquez F, Pines D, and Samuel P. D (2010) Small rotor design optimization using blade element momentum theory and hover tests. J Aircr 47: 268-283.
[8] Batten W, Bahaj A, Molland A, and Chaplin J (2008) The prediction of the hydrodynamic performance of marine current turbines. Renew Energy 33: 1085-1096.
[9] Pavel H, Jan K, and Nikola Z (2018) Wing and propeller aerodynamic interaction through nonlinear lifting line theory and blade element momentum theory. MATEC Web Conf 27.
[10] Favacho BI, Vaz JRP, Mesquita LA, Lopes F, Moreira ALS, Soeiro NS (2016) Contribution to the marine propeller hydrodynamic design for small boats in the Amazon region. Acta Amaz 46: 37-46.
[11] Siddappaji K, Turner MG (2015) Counter rotating propeller design using blade element momentum theory. in Proceedings of the 22nd ISABE Conference.
[12] Barltrop N, Varyani K, Grant A, Clelland D, and Pham X (2007) Investigation into wave—current interactions in marine current turbines. JPEE 221: 233-242.
[13] Phillips AB, Turnock SR, Furlong M (2008) Comparisons of CFD simulations and in-service data for the self propelled performance of an autonomous underwater vehicle. ONR.
[14] Castegnaro S (2018) Aerodynamic design of low-speed axial-flow fans: A historical. MDPI Design Journal  2: 20.
[15] Yang K (2020) Geometry design optimization of a wind turbine blade considering effects on aerodynamic performance by linearization. Energies. MDPI Energies Journal 13: 2320.
[16] کرمی س، ملکی ع، هادیپور گودرزی ر، علیزاده ا (2020) طراحی و بررسی عددی جریان پایا و ناپایا   ‏حول پروانه باز و بسته در آب آزاد به‌وسیله مدل‌های SRANS و URANS. مجله مهندسی مکانیک تبریز 194-180 :50.    
[17] کرمی س، میرزایی ق، ملکی ع (2020) تحلیل عددی جریان حول یک پروانه گام ثابت وPBCF  به روشCFD . فصلنامه علمی پژوهشی دریا فنون 111-98 :(3)7.
[18] Groves NC, Huang TT, Chang MS (1989) Geometric characteristics of DARPA (Defense Advanced Research Projects Agency) SUBOFF models (DTRC model numbers 5470 and 5471). David Taylor Research Center Bethesda MD Ship Hydromechanics Dept.
[19] AIO (1998) Aeronautics and Astronautics, AIAA guide for the verification and validation of computational fluid dynamics simulations. AIAA.
[20] Shen H, Yao Z, Wu B, Zhang N, Yang M (2010) A new method on uncertainty analysis and assessment in ship CFD. Sh Mech 14: 1071-1083.
[21] Simonsen CD, Stern C (2003) Verification and validation of RANS maneuvering simulation of Esso Osaka: effects of drift and rudder angle on forces and moments. Comput fluids 1325-1356.
[22] کرمی س، هادی پور گودرزی ر (2020) مطالعه تایید و اعتبارسنجی در روش دینامیک سیالات محاسباتی برای نتایج مقاومت کشتی کانتینربرKCS  بوسیله مدل توربولانسی انتقال تنش برشی. فصلنامه علمی پژوهشی دریا فنون 85-70 :(2)8.
[23] ITTC (2011) Guidelines: Practical Guidelines for Ship CFD Applications. 7: 02-03.
[24] Manual IQ (1999) Uncertainty analysis in CFD uncertainty assessment methodology. The 22nd ITTC, Seoul and Shanghai, Report.
[25] Procedures IR (1999) ITTC–recommended procedures-performance, propulsion 1978 ITTC performance prediction method.  ITTC: 7.5-02.
[26] Procedures IR (2002) Uncertainty analysis in CFD, uncertainty assessment methodology and procedures. ITTC-Quality Manual, 8-14: 7.5-02.
[27] Procedures IR (2017) Uncertainty analysis in CFD, verification and validation methodology and procedures. ITTC-Recommended Procedures and Guidelines 7.5-03-01-01: 7.5-02.
[28] Jessup S (1998) Experimental data for RANS calculations and comparisons (DTMB P4119). in 22nd ITTC Propulsion Committee Propeller RANS/Panel Method Workshop, Grenoble.
[29] Jessup SD (1990) Measurement of multiple blade rate unsteady propeller forces. DTNSRDC.
[30] Kulczyk J, Skraburski L, Zawiślak M (2007) Analysis of screw propeller 4119 using the Fluent system. Arch Civ Mech Eng 7: 129-137.
[31] CD-adapcoTM, (2017) STAR-CCM+ User Guid.
[32] Versteeg HK, Malalasekera W (2007) An introduction to computational fluid dynamics: the finite volume method. Pearson Education.
[33] Bertram V (2012) Practical ship hydrodynamic. Elsevier sci.
[34] Carlton J (2012) Marine propellers and propulsion. Butterworth-Heinemann.
[35] Ghose J (2004) Basic ship propulsion. Allied Publishers.
[36] Schlichting H, Gersten K (2016) Boundary layer theory. Springer Sci.
[37] Prestero T (2001) Verification of a six-degree of freedom simulation model for the REMUS autonomous underwater vehicle. Master, Massachusett.
[38] Lee H, Song M, Suh J, Chang B (2014) Hydro-elastic analysis of marine propellers based on a BEM-FEM coupled FSI algorithm. Int J Nav Archit 6: 562-577.
[39] Lin H. J, Lin J, Chuang T (2005) Strength evaluation of a composite marine propeller blade. J Reinf Plast Compos 24: 1791-1807.
[40] Ghassemi H, Fadavie M, Nematy D (2015) Hydro-structure analysis of composite marine propeller under pressure hydrodynamic loading. Am J Mech Eng 3: 41-46.
[41] Yu K, Yan P, Hu J (2020) Numerical analysis of blade stress of marine propellers. JJMSA  19: 436-443.
[42] Murawski L (2018) Methodology of propeller strength calculations in settled and emerging work conditions. JMCM.
[43] کرمی س، هادی پور گودرزی ر (2020) بررسی عددی عملکرد هیدرودینامیکی و آکوستیکی یک پروانه دریایی در دو ضریب پیشروی متفاوت . فصلنامه علمی پژوهشی دریا فنون 114-100 :(2)8.
[44] Stanko T (2010) Modelling a sound radiated  by a turbulent jet. Doctor, Environmental and Material Engineering University of  Leeds  School of  Process.
[45] Purwana A, Ariana IM, Handani DW, Wardhana W (2018) Performance and noise prediction of marine propeller using numerical simulation. IPTEK: 20-25.
[46] Wu Q, Huang B, Wang G, Cao S, Zhu M (2018) Numerical modelling of unsteady cavitation and induced noise around a marine propeller. Ocean Eng 160: 143-155.
[47] IMO (2014) Guidelines for the reduction of underwater noise from commercial shipping to address adverse impacts on marine life.
[48] Gorji M, Ghassemi H, Mohamadi J (2019) Effect of rake and skew on the hydrodynamic characteristics and noise level of the marine propeller. Iran J Sci Technol - Trans Mech Eng 43: 75-85.
[49] Bagheri M, Seif M, Mehdigholi H (2014) Numerical simulation of underwater propeller noise. JOMAse 4.
[50] Seol H, Jung B, Suh JC, Lee S (2002) Prediction of non-cavitating underwater propeller noise. J Sound Vib 257: 131-156.
[51] Omweri OE, Amisi JO, Long SH (2017) Performance predication of marine propeller using steady and unsteady flow approaches. in Proceedings of sustainable Research and Innovation Conference: 126-133.