Reliability-Based Design Optimization of Columns under Buckling Load

Authors

Ferdowsi University of Mashhad

Abstract

In this paper, the reliability based design optimization of columns under buckling load is investigated using evolutionary structural optimization. To determine the reliability index, the Hasofer-Lind method is employed and results are compared with the Monte Carlo method. The standard response surface method with central composite design is used to estimate the limit state function. An optimization algorithm for optimal design of columns against buckling with different cross-sections and boundary conditions is presented while keeping the column weight constant.The Taguchi method is used to provide the most suitable levels of the design variables. Then by introducing reliability constraints into the algorithm, the optimized shape of the column under buckling load based on reliability is obtained. Optimized design obtained from Deterministic Optimization (DO) and Reliability Based Design Optimization (RBDO) are compared. Numerical examples show that maximum buckling load capacity is increased compared to the initial uniform design and also RBDO model is more reliable than DO.

Keywords


[1] قدوسیان ع، شیخی م (1392) یافتن شکل بهینه سازه­های اسکلتی به کمک روش تدریجی سرد شدن فلزات. نشریه علمی مکانیک سازه­ها و شاره­ها 21-13 :(1)2.
[2] Xie YM, Steven GP (1993) A simple evolutionary procedure for structural optimization. Compos Struct  49(5): 885-896.
[3] Li Q, Steven GP, Xie Y (2000) Evolutionary structural optimization for stress minimization problems by discrete thickness design. Compos Struct 78(6): 769-780.
[4] Xia L, Zhang L, Xia Q, Shi T (2018)  Stress-based topology optimization using bi-directional evolutionary structural optimization method. Comput Method Appl M  333: 356-370.
[5] Simonetti HL, Almeida VS, das Neves FDA, Almeida  VDD (****) Topology optimization for elastic analysis of 3D structures using evolutionary methods. Proceedings of the XL Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC, Natal/RN, Brazil.
[6] Manickarajah D, Xie Y, Steven G (1998) An evolutionary method for optimization of plate buckling resistance. Finite Elem Anal Des 29(3-4): 205-230.
[7] Manickarajah D, Xie Y, Steven G (2000) Optimisation of columns and frames against buckling. Compos Struct  75(1): 45-54.
[8] Yi B, Zhou Y, Yoon GH, Saitou K (2019)  Topology optimization of functionally-graded lattice structures with buckling constraints. Comput Method Appl M 354: 593-619.
[9] Wang W, Ye H, Sui Y (2019) Lightweight Topology optimization with buckling and frequency constraints using the independent continuous mapping method. Acta Mech Solida Sin 32(3): 310-325.
[10] Pitton SF, Ricci S, Bisagni C (2019) Buckling optimization of variable stiffness cylindrical shells through artificial intelligence techniques. Compos Struct 230: 111513.
[11] Alam MI, Kanagarajan B, Jana P (2019) Optimal design of thin-walled open cross-section column for maximum buckling load. Thin-Walled Struct 141: 423-434.
[12] Kharmanda G, Olhoff N, Mohamed A, Lemaire M (2004) Reliability-based topology optimization. Struct Multidiscip Optim 26(5): 295-307.
[13] Liu X, Yi WJ, Li Q, Shen PS (2008) Genetic evolutionary structural optimization. J Constr Steel Res 64(3): 305-311.
[14] Yoo KS, Eom YS, Park JY, Im MG, Han SY (2011) Reliability-based topology optimization using successive standard response surface method. Finite Elem Anal Des 47(7): 843-849.
[15] Eom YS, Yoo KS, Park JY, Han SY (2011) Reliability-based topology optimization using a standard response surface method for three-dimensional structures. Struct Multidiscip Optim 43(2): 287-295.
[16] López C, Bacarreza O, Baldomir A, Hernández S, Aliabadi MF (2017) Reliability-based design optimization of composite stiffened panels in post-buckling regime. Struct Multidiscip Optim 55(3): 1121-1141.
[17] Chun J, Paulino GH, Song J (2019) Reliability-based topology optimization by ground structure method employing a discrete filtering technique. Struct Multidiscip Optim 60(3): 1035-1058.
[18] جوهری م، احمدی ندوشن ب (1396) بهینه‌سازی توپولوژی بر اساس قابلیت اعتماد در سازه پل با استفاده از روش های قابلیت اعتماد مرتبه اول و دوم. مهندسی سازه و ساخت (1)4.
[19] Nowak AS, Collins KR (2012) Reliability of structures. CRC Press.
[20] Hasofer AM, Lind NC (1974) Exact and invariant second-moment code format. J Eng Mech 100(1): 111-121.
[21] Yildiz AR (2013) Comparison of evolutionary-based optimization algorithms for structural   design optimization. Eng Appl Artif Intell 26(1): 327-333.
[22] Haftka RT, Gürdal Z (2012) Elements of  structural optimization. Springer Science & Business Media.