Design of hybrid control system for path tracking of a quadrotor subject to uncertain disturbances

Authors

1 mechanical engineering faculty, isfahan university of technology, isfahan, iran

2 mechanical engineering faculty, K. N. Toosi university of technology, tehran, iran

3 assistant professor, mechanical engineering faculty, K. N. Toosi university of technology, tehran, iran

Abstract

In this research, a novel nonlinear control strategy along with its simulation for a quadrotor helicopter is proposed. In the present work, a six-DOF dynamic equations of the quadrotor system subjected to unknown external disturbances based on the Newton-Euler equations is developed completely and without any simplification. Considering the under-actuated and strongly coupled characteristics of quadrotor helicopter, a nonlinear control method is designed using integral backstepping combined with the sliding mode control (integral BS-SMC) to stabilize the qudrotor attitude and to tracking the desired trajectory. The designed controllers based on the hierarchical control scheme can be used to control the rotational and translational movements and their stability are validated by the Lyapunov stability theorem. Using the proposed controller, the chattering phenomenon and discontinuousness of the control inputs faced by traditional sliding mode control (SMC) can be avoided. The feasibility and performance of the presented control approach is verified by the simulations under different scenarios. The results show that the proposed nonlinear control method not only has a better tracking performance than PID controller, but also has a higher robustness when unknown disturbances occur.

Keywords


[1] Bouabdallah S, Andre N, Roland S (2004) PID vs LQ control techniques applied to an indoor micro quadrotor. Proc. of The IEEE International Conference on Intelligent Robots and Systems (IROS).
[2] Li J, Yuntang L (2011) Dynamic analysis and PID control for a quadrotor. International Conference on Mechatronics and Automation (ICMA), IEEE.
[3] Salih AL, Moghavvemi M, Mohamed AF, Gaeid KS (2010) Modelling and PID controller design for a quadrotor unmanned air vehicle. International Conference on Automation Quality and Testing Robotics (AQTR), IEEE.
[4] Yanjun L, Xu T, Zhang X (2016) A fuzzy self-tuning pd controller for a quadrotor: Design and implementation. Chinese Control and Decision Conference (CCDC), IEEE.
[5] Tayebi A, Stephen M (2006) Attitude stabilization of a VTOL quadrotor aircraft. IEEE T Contr Syst T 14(3): 562-571.
[6] نوری مطلق م، صفرپور پ، پورقلی م (2016) مدل­سازی دینامیکی، شبیه­سازی کنترل کوادروتور با استفاده از کنترل­کننده­های فیدبک خطی­ساز و پی آی دی بر پایه داده­های آزمایشگاهی سنسورهای ممز. مهندسی مکانیک مدرس    185-175 :(12)16.
[7] تیکنی و، شهبازی ح (2018) طراحی الگوریتم­های کنترلی انتگرال-مشتق گیر- تناسبی مرتبه کسری و معمولی همراه    با بررسی تجربی عملکرد آن برای کنترل موقعیت          زاویه­ای کوادروتور. نشریه علمی مکانیک سازه­ها و شاره­ها   50-37 :(2)8.  
[8] Xu R, Ozguner U (2006) Sliding Mode control of a quadrotor helicopter. 45th IEEE Conference on Decision and Control, IEEE.
[9] Yimeng T, Patton, RJ (2012) Phase modulation of robust variable structure control for nonlinear aircraft. International Conference on Control (CONTROL), IEEE.
[10] Luque-Vega L, Castillo-Toledo B, Loukianov AG (2012) Robust block second order sliding mode control for a quadrotor. J Frankl Inst 349)2): 719-739.
[11] متحدی ا، اکبرزاده کلات ا (2016) کنترل مود لغزشی مقاوم تطبیقی کوادروتور در حضور اغتشاش باد. مهندسی مکانیک مدرس 102-95 :(12)16.
[12] افشین­فر س، سلطان­پور م ر، رزمی ح (2017) طراحی کنترل­کننده مود لغزشی فازی تطبیقی برای کنترل موقعیت و زوایای یک بالگرد چهار ملخه. نشریه علمی مکانیک سازه­ها و شاره­ها 172-159 :(4)7.
[13] Mofid O, Mobayen S (2017) Adaptive sliding mode control for finite-time stability of quad-rotor UAVs with parametric uncertainties. ISA T 1-14.
[14] Adhikary N, and Chitralekha M (2013) Integral backstepping sliding mode control for underactuated systems: Swing-up and stabilization of the cart–pendulum system. ISA T 52)6(: 870-880.
[15] Slotine JJE, Li W (1991) Applied nonlinear control. Vol. 199. No. 1. Englewood Cliffs, NJ: Prentice hall.
[16] Bouabdallah S, Pierpaolo M, Roland S (2004) Design and control of an indoor micro quadrotor. International Conference on Robotics and Automation, IEEE.
[17] Bouabdallah S, Roland S (2005) Backstepping and sliding-mode techniques applied to an indoor micro quadrotor. International Conference on Robotics and Automation, IEEE.
[18] Colorado J,  Barrientos A, Martinez A, Lafaverges B, Valente J (2010) Mini-quadrotor attitude control based on hybrid backstepping & frenet-serret theory. International Conference on Robotics and Automation (ICRA), IEEE.
[19] Soumelidis A, Gáspár P (2008) Control of an experimental mini quadrotor UAV, control and automation. 16th Mediterranean Conference on IEEE.
[20] Mian A, Daobo W (2008) Modeling and backstepping based nonlinear control strategy for a 6 DOF quadrotor helicopter. Chinese J Aeronaut 21(3): 261-268.
[21] Lu CH, Hwang YR, Shen YT (2011) Backstepping sliding mode tracking control of a vane-type air motor X–Y table motion system. ISA T 50(2): 278-286.
[22] Dong B, Zhao B, Li Y (2011) Backstepping sliding mode decentralized control for reconfigurable manipulators based on ESO. 30th Chinese Control Conference (CCC), IEEE.
[23] Kwan C, Lewis FL (2000) Robust backstepping control of nonlinear systems using neural networks. IEEE T Syst Man Cy A 30(6):753-766.
[24] Zinober ASI, Liu P (1996) Robust control of nonlinear uncertain systems via sliding mode with backstepping design. International Conference on Control, IET.
[25] Krstic M, Kanellakopoulos I, Kokotovic PV (1995) Nonlinear and adaptive control design.  Wiley, New York.
[26] Zhang T, Shuzhi SG, Hang CC (2000) Adaptive neural network control for strict-feedback nonlinear systems using backstepping design. Automatica 36(12): 1835-1846.
[27] Jia Z, et al (2017) Integral backstepping sliding mode control for quadrotor helicopter under external uncertain disturbances. Aerosp Sci Technol 68: 299-307.
[28] Baruh H (1999) Analytical dynamics. WCB/McGraw-Hill, Boston.
[29] Chun Kiat T, Wang J, Paw YC, Yong T (2016) Tracking of a moving ground target by a quadrotor using a backstepping approach based on a full state cascaded dynamics. Appl Soft Comput 47: 47-62.
[30] Sadr S, Moosavian SAA, Zarafshan P (2014) Dynamics Modeling and control of a quadrotor with swing load. J Robotic Syst.
[31] Eresen A, Nevrez İ, Mehmet Ö (2012) Autonomous quadrotor flight with vision-based obstacle avoidance in virtual environment. Expert Syst Appl 39(1):894-905.
[32] Sang Min O (2012) Modeling and control of a quad-rotor helicopter. Diss University of Florida.
[33] Zongyu Z (2010) Trajectory tracking control design with command-filtered compensation for a quadrotor. Iet Control Theory A  4(11): 2343-2355.
[34] Neng-Sheng P, Wei-Cheng L, Min-Hung C, Pi-Yun C (2016) Flight Control for a quadrotor of attitude control based on android system and using optimal-tuning design. Comput Electr Eng 54:170-184.
[35] Alderete TS (1995) Simulator aero model implementation. NASA Ames Research Center, Moffett Field, California.