Numerical Study of Dielectric Barrier Discharge (DBD) Plasma Actuators on Separation Control of Supersonic Flow

Authors

1 PhD Student, Faculty of Mechanical Engineering, Malek-Ashtar University of Technology, Isfahan, Iran.

2 Faculty of Mechanical Engineering, Malek-Ashtar University of Technology, Isfahan, Iran.

3 Assis. Prof., Faculty of Mechanical Engineering, Malek-Ashtar University of Technology, Isfahan, Iran.

Abstract

The aim of present study is to control the supersonic flow (M=1.5) over a compression ramp using Dielectric Barrier Discharge (DBD) plasma actuators. For numerical simulation, 2D and 3D Nervier-Stokes equations along with the kω SST turbulence model and Jameson's method are used. DBD Actuator is simulated in steady mode using Shyy phenomenological model and then applied to the momentum equations as a source term. The numerical results with the presence of two rows of DBD in voltage of 75 kV and frequency of 2 kHz discharging at starting point of separation reduced the separation region by 10 mm, moved shock location and increased its angle by 2°. Parametric study of DBDs are illustrated that the most efficient location of actuator is related to time when actuator is exactly located at the start point of separation. Also, increasing frequency and voltage of DBD reduced the separation and formation of vortices as well as the displacement of shock wave. Finally, increasing the number of DBD to three rows, with the frequency and voltage up to 10 kHz and 75 kV respectively, completely eliminate the vortices of separation region.

Keywords


[1] Saad MR (2013) Experimental studies on shock boundary layer interactions using micro-ramps at Mach 5. Dep. of Mech., Aer. & Civil Eng., Uni. of Manchester.
[2] Smith A N, Babinsky H, Fulker JL Ashil PR (2004) Shock-wave/boundary-layer interaction control using streamwise slots in transonic flows. J Aircraft 41(3): 540-546.
[3] Sarimurat MN, Dang TQ (2012) Shock management in diverging flow passages by blowing/suction, part 2: applications. J Propul Power 28(6): 1230-1242.
[4] Falempin F, Wendling E, Goldfeld M, Starov AV (2006) Experimental investigation of starting process for a variable geometry air inlet operating from Mach 2 to Mach 8. 42nd AIAA Joint Pro. Conf. & Ex.
[5] Huang J, Hu B, Li Z, Zhang J, Qian Z, and Lan S (2020) The effects of plasma-based body force on flow separation suppression. CMAS 52: 113-129.
[6] Abdollahzadeh M, Páscoa JC, Oliveira PJ (2014) Two-dimensional numerical modeling of interaction of micro-shock wave generated by nanosecond plasma actuators and transonic flow. J Comput Appl Math 270: 401-416.
[7] قرائیان م، رمضانی زاده م، طیبی رهنی م، (۱۳۹۸) بررسی عددی کنترل فعال جدایش جریان آشفته از روی پله پسرو تحت تاثیر عملگر پلاسمایی DBD بخش دوم: تاثیر ولتاژ تغذیه در مد تحریک دائمی، بیست و چهارمین کنفرانس سالانه بین­المللی انجمن مهندسان مکانیک ایران، یزد، ایران.
[8] عبدی زاده غ، قاسملو س (1398) بررسی عددی اثر عملگر پلاسمایی بر ضرایب آیرودینامیکی یک ایرفویل تحت نوسان انتقالی، مهندسی مکانیک دانشگاه تبریز 248-239 :(49)88.
[9] امیدی ج، مظاهری ک (1397) شبیه‌سازی عددی عملگر پلاسمایی به منظور کنترل جدایش لایه‌مرزی با استفاده از مدل الکتروستاتیک ارتقا یافته. مجله مهندسی مکانیک شریف 33-22 :(1)34.
[10] Porrello C, Roy S, Pimentel RG (2020) separation control inside a rectangular supersonic inlet using dielectric barrier discharge plasma actuators. AIAA Scitech, Orlando 2020.
[11] Patel MP, Alan BC, Christopher CN (2012) Shock generation and control using dbd plasma actuators. SBIR Phase I Final Rep, NASA/CR.
[12] Gonzalez P, Qin N (2020) Plasma models in hybrid RANS-LES simulation for backward facing step flow control. CMAS 52: 93-112.
[13] Erfani R, Kontis K (2020) MEE-DBD plasma actuator effect on aerodynamics of a NACA0015 aerofoil: separation and 3D wake. CMAS 52: 75-92.
[14] Im S, Do H, Cappelli M (2010) Dielectric barrier discharge control of a turbulent boundary layer in a supersonic flow. Jpn J Appl Phys 2 97(4): 041503.
[15] William Graebel (2007) Advanced fluid mechanics. 1st edn, Academic Press.
[16] Shyy W, Jayaraman B, Andersson A (2002) Modeling of glow discharge-induced fluid dynamics. JPN J APPL PHYS 92(11): 6434-6443.
[17] Jameson A, and Mavriplis D (1985) Finite volume solution of the two-dimensional euler equations on a regular triangular mesh, The 23rd Aero. Sci. Meeting, Nevada.
[18] Sosa R, Artana G (2006) Steady control of laminar separation over airfoils with plasma sheet actuators. J Electrostat 64(7-9): 604-610.