Experimental investigation of the effect of parallel-flow primary nozzle on the performance of the ejector

Authors

University Of Shahid Rajaee, Lavizan, Tehran, Iran.

Abstract

Geometry of primary nozzle is one of the parameters that affect the performance of a supersonic ejector. In this paper, the effect of using parallel-flow primary nozzle on the performance of a supersonic ejector is experimentally investigated. For this purpose, two primary nozzles, conical and parallel-flow, with the same converging portion and the same ratio of exit surface to throat surface, have been used. The parallel-flow nozzle diverging curve is calculated using the characteristic method. At various positions of the primary nozzle, characteristic curves of the ejectors with conical and parallel-flow nozzles have been compared.The results show that by changing the primary nozzle diverging curve from conical to parallel-flow, at the same position of primary nozzle, the entrainment ratio increases in both critical and subcritical regions. In the critical region, entrainment ratios obtained by the primary nozzle positions 5 mm, 10 mm, and 15 mm are increased by 9.5%, 4.5% and 4.7%, respectively.The optimum position of the primary nozzle changes with changing the primary nozzle diverging curve. At the suitable position of the primary nozzles and without any reduction in critical pressure, the maximum relative increase of entrainment ratio in the critical region is 8%.

Keywords


[1] نیلی ا م، روشنی م، ربیعی ع (1390) طراحی یک بعدی اجکتور یک، دو و سه مرحله­ای تونل باد فراصوتی. مجله مکانیک سازه­ها و شاره­ها 68-58 :2.
[2] طحانی م، شمس­الدینی س، فراهت س (1394)     شبیه­سازی ترمو­دینامیکی کولرهای اجکتوری-تراکمی. مجله مکانیک سازه­ها و شاره­ها 187-179 :(2)5.
[3] Aidoun Z, Ameur K, Falsafioon M, Badache M (2019) Current advances in ejector modeling, experimentation and application for refrigeration and heat pumps. part 1: single-phase ejectors. Inventions 4(1).
[4] Chang YJ, Chen YM (2000) Enhancement of           a steam jet refrigerator using a novel application    of the petal nozzle. Exp Therm Fluid Sci 22: 203-211.
[5] Opgenorth MJ, Sederstrom D, McDermott W, Lengsfeld C S (2012) Maximizing pressure recovery using lobed nozzles in a supersonic ejector. Appl Therm Eng 37: 396-402.
[6] Yang X, Long X, Yao X (2012) Numerical investigation on the mixing process in a steam ejector with different nozzle structures. J Therm Sci 56: 95-106.
[7] Kong FS, Kim HD, Jin Y, Setoguchi J (2013) Application of chevron nozzle to a supersonic ejector–diffuser system. Procedia Eng 56: 193-200.
[8] Rao SMV, Jagadeesh G (2014) Novel supersonic nozzles for mixing enhancement in supersonic ejectors. Appl Therm Eng 71: 62-71.
[9] Hakkaki-Fard A, Aidoun Z, Ouzzane M (2015) A computional methodology for ejector design and performance mximisation. Energ Convers Manage. 105: 1291-1302.
[10] Shourehdeli S A, Mobini K, Asakereh A (2019) Numerical investigation of the effects of primary nozzle diverging portion on performance of the supersonic ejector of an ejector refrigeration cycle. Int J Air-Cond Refrig 27( 3).
[11] Elkady M, Karameldin A, Negeed R, El-Bayoumy R (2008) Experimental investigation of the effect of ejector geometry on its performance. Int J Nucl Desalin 3: 215-219.
[12] Gagan J, Smierciew K, Butrymowicz D, Karwacki J (2014) Comparative study of turbulence models in application to gas ejectors. Int J Therm Sci 78: 9-15.
[13] ESDU (1985) Ejector and pump. Data item 85032. ESDU Int Ltd, London.
[14] Huang BJ, Chang JM, Wang CP, Petrenko VA (1999) A 1-D analysis of ejector performance. Int J Refrig 22: 354-364.
[15] ESDU (2011) Ejector and pump. Data item 92042. ESDU Int Ltd, London.
[16] Ablwaifa AE (2006) A theoretical and experimental investigation of jet-pump refrigeration system. phD Thesis, University of Nattingham.
[17] Zucrow MJ, Hoffman JD (1977) Gas dynamics. Wiley, New York.
[18] White FM (2001) Fluid mechanics. 4th edn. McGraw-Hill, New York.
[19] Holman J. P. (2012) Experimental Methods for Engineers. Mc-Graw-Hill, New York.
[20] شوره­دلی ش ع، مبینی ک، عساکره ع (1399) بررسی عددی اثر نازل جریان موازی بر عملکرد اجکتور مافوق صوت یک چرخه تبرید اجکتوری. مجله مهندسی مکانیک تبریز  243-239 :(4)5.
[21] Pianthong K, Seehanam W, Behnia M, Sriveerakul T, Aphornratana S (2007) Investigation and improvement of ejector refrigeration system using computational fluid dynamics technique. Energ Convers Manage 48: 2556-2564.